首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
(4‐Aminophenyl)arsonic acid (p‐arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4‐aminophenyl)arsonic acid (p‐arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4‐aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena‐poly[[[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]‐[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ]] dihydrate], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n , (II), catena‐poly[[triaquastrontium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Sr(C6H7AsNO3)2(H2O)3]n , (III), and catena‐poly[[triaquabarium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Ba(C6H7AsNO3)2(H2O)3]n , (IV). In the structure of magnesium salt (I), the centrosymmetric octahedral [Mg(H2O)6]2+ cation, the two hydrogen p‐arsanilate anions and the four water molecules of solvation form a three‐dimensional network structure through inter‐species O—H and N—H hydrogen‐bonding interactions with water and arsonate O‐atom and amine N‐atom acceptors. In one‐dimensional coordination polymer (II), the distorted octahedral CaO6 coordination polyhedron comprises two trans‐related water molecules and four arsonate O‐atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four‐membered via a single O atom and the other is eight‐membered via O :O ′‐bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen‐bonding involving O—H…O, O—H…N and N—H…O interactions gives an overall three‐dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular M O7 coordination polyhedra about the M 2+ centres, which lie on twofold rotation axes along with one of the coordinated water molecules. The coordination centres are linked through inversion‐related arsonate O :O ′‐bridges, giving eight‐membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter‐chain N—H…O and O—H…O hydrogen‐bonding interactions extend the structures into three dimensions and the crystal packing includes π–π ring interactions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].  相似文献   

2.
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition‐metal complexes, namely bis(μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato)‐κ3N 2,O :N 13N 1:N 2,O‐bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena‐poly[[[diamminediaquacopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 1:N 4,O‐[diamminecopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 4,O :N 1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n , (II), (μ‐5‐amino‐1,2,4‐triazol‐1‐ide‐3‐carboxylato‐κ2N 1:N 2)di‐μ‐hydroxido‐κ4O :O‐bis[triamminecobalt(III)] nitrate hydroxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4‐triazole‐3‐carboxylic acid or 3‐amino‐1,2,4‐triazole‐5‐carboxylic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H…O, O—H…N and N—H…O hydrogen bonds and π–π stacking interactions between the centroids of the triazole rings contribute to the formation of the three‐dimensional supramolecular structure. Compound (II) exhibits a one‐dimensional chain structure, with O—H…O hydrogen bonds and weak O—H…N, N—H…O and C—H…O hydrogen bonds linking anions and lattice water molecules into the three‐dimensional supramolecular structure. Compared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H…O, N—H…N, O—H…N and O—H…O hydrogen bonding occurs in the structure, leading to the formation of the three‐dimensional supramolecular structure.  相似文献   

3.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

4.
A novel route for the synthesis of Cu(II)‐triazolophthalazine complexes using the Cu(II)‐promoted cyclization dehydrogenation reactions of hydrazonophthalazines under reflux was presented. Two hydrazonophthalazines were cyclized to the corresponding triazolophthalazine ligands, 3‐pyridin‐2‐yl‐3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazine ( TPP ) and 3‐(3,10b‐dihydro‐[1,2,4]triazolo[3,4‐a]phthalazin‐3‐yl)‐benzoic acid ( TP3COOH ), followed by in situ complexation with Cu(II) yielding six novel Cu(II)‐triazolophthalazine complexes depending on the reaction conditions. The molecular and supramolecular structures of the Cu(II)‐triazolophthalazine complexes were discussed. The metal sites have rectangular pyramidal geometry in the [Cu(TPP)Cl2]2; 1 and [Cu(TP3COOEt)Cl2(H2O)]2; 4 dinuclear complexes, distorted square planar in [Cu(TP3COOMe)2Cl2]; 3 , [Cu(TP3COOH)2Cl2]; 5 and [Cu(TP3COOH)2Cl2]·H2O; 6 and a distorted octahedral in [Cu(TPP)(H2O)2(NO3)2]; 2 . Hirshfeld analysis showed that the O…H, C…H, Cl…H (except TP3COOH and 2 ), N…H and π‐π stacking interactions are the most important intermolecular contacts. The π‐π stacking interactions are the maximum for TP3COOH and complex 6 with net C…C/C…N contacts of 19.4% and 15.4%, respectively. The orbital–orbital interaction energies of the Cu‐N/Cu‐Cl bonds correlated inversely with the corresponding Cu‐N/Cu‐Cl distances, respectively. The charge transfer processes between Cu(II) and ligand groups were also discussed. The charge densities of the Cu(II) centers are reduced to 0.663–0.995 e due to the interactions with the ligand groups coordinating it.  相似文献   

5.
The title compound, {[CuCl2(PhTz)2]·0.5PhTz}n (PhTz is 1‐­phenyl­tetrazole, C7H6N4), has a polymeric structure, with uncoordinated disordered PhTz mol­ecules in the cavities. The coordination polyhedron of the Cu atom is a highly elongated octahedron. The equatorial positions are occupied by two Cl atoms [Cu—Cl = 2.2687 (9) and 2.2803 (7) Å] and two N atoms of the PhTz ligands [Cu—N = 2.0131 (19) and 2.0317 (18) Å]. The more distant axial positions are occupied by two Cl atoms [Cu—Cl = 3.0307 (12) and 2.8768 (11) Å] that lie in the equatorial planes of two neighbouring Cu octahedra. The [CuCl2(PhTz)2] units are linked by Cu—Cl bridges into infinite chains extending parallel to the a axis. The chains are linked into two‐dimensional networks by intermolecular C—H⋯N interactions between the phenyl and tetrazole fragments, and by face‐to‐face π–π interactions between symmetry‐related phenyl rings. These two‐dimensional networks, which lie parallel to the ac plane, are connected by intermolecular π–π stacking interactions between phenyl rings, thus forming a three‐dimensional network.  相似文献   

6.
The title polymeric compound, [CuCl2(C5H10N4)2]n, is the first structurally characterized complex with a bulky 1‐alkyl­tetrazole ligand. The coordination polyhedron of the Cu atom is an elongated octahedron. The equatorial positions of the octahedron are occupied by the two Cl atoms, with Cu—Cl distances of 2.2920 (8) and 2.2796 (9) Å, and by the two N‐4 atoms of the tetrazole ligands, with Cu—N distances of 2.023 (2) and 2.039 (2) Å. Two symmetry‐related Cl atoms occupy the axial positions, at distances of 2.8244 (8) and 3.0174 (8) Å from the Cu atom. The [CuCl2(C5H10N4)2] units form infinite chains extended along the b axis, linked together only by van der Waals interactions. The skeleton of each chain consists of Cu and Cl atoms.  相似文献   

7.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

8.
New coordination compounds with the 4,4′‐bi‐1,2,4‐triazole ligand (btr), namely tetraaqua‐2κ4O‐di‐μ2‐4,4′‐bi‐1,2,4‐triazole‐1:2κ2N1:N1′;2:3κ2N1:N1′‐hexachlorido‐1κ3Cl,3κ3Cl‐trizinc(II), [Zn3Cl6(C4H4N6)2(H2O)4], (I), and poly[cadmium(II)‐μ2‐4,4′‐bi‐1,2,4‐triazole‐κ2N1:N2‐di‐μ2‐chlorido], [CdCl2(C4H4N6)]n, (II), reveal an unprecedented molecular zwitterionic structure for (I) and a polymeric two‐dimensional layer structure for (II). Differences between these products, which involve the formation of either charge‐separated chlorometallate/aquametal fragments or complementary organic and inorganic bridges, are attributable to the hardness–softness characters of the metal cations. In (I), two N1,N1′‐bidentate btr molecules connect one [Zn(H2O)4]2+ cation and two [ZnCl3] anions into a linear trizinc motif (the Zn atom of the cation occupies a centre of inversion in an N2O4 coordination octahedron, whereas the Zn atom of the anion possesses a distorted tetrahedral Cl3N environment). In (II), the distorted vertex‐sharing CdCl4N2 octahedra are linked into binuclear [Cd22‐Cl)(μ2‐btr)2]3+ fragments by unprecedented N1:N2‐bidentate btr double bridges and bridging chloride ligands, while the additional chloride anions are also bridging, providing further propagation of the fragments into a two‐dimensional network [Cd—Cl = 2.5869 (2)–2.6248 (7) Å].  相似文献   

9.
The crystal structures of the title compounds, (C2N3H8)2[CuCl4], (I), and (C8H14N4)[CuCl4], (II), have been studied by X‐ray diffraction. The structures consist of discrete [CuCl4]2? anions with two monoprotonated (C2N3H8)+ cations for (I) and a diprotonated (C8N4H14)2+ cation for (II). The [CuCl4]2? anions of both compounds have flattened tetrahedral geometries. There are several N—H?Cl weak bonds that join the [CuCl4]2? anions and the organic cations helping retain the pseudo‐tetrahedral geometries of the anions.  相似文献   

10.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

11.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

12.
The β‐diketone 3‐(4‐cyano­phenyl)­pentane‐2,4‐dione crystallizes as the enol tautomer 4‐(2‐hydroxy‐4‐oxopent‐2‐en‐3‐yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H⋯O hydrogen bond [O⋯O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complexbis­[3‐(4‐cyano­phenyl)­pentane‐2,4‐dionato‐κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β‐diketonate O atoms in a slightly distorted square‐planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.  相似文献   

13.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

14.
1‐[6‐(1H‐Pyrrolo[2,3‐b]pyridin‐1‐yl)pyridin‐2‐yl]‐1H‐pyrrolo[2,3‐b]pyridin‐7‐ium tetrachloridoferrate(III), (C19H14N5)[FeCl4], (II), and [2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl‐κN7)pyridine‐κN]bis(nitrato‐κO)copper(II), [Cu(NO3)2(C19H13N5)], (III), were prepared by self‐assembly from FeCl3·6H2O or Cu(NO3)2·3H2O and 2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl)pyridine [commonly called 2,6‐bis(azaindole)pyridine, bap], C19H13N5, (I). Compound (I) crystallizes with Z′ = 2 in the P space group, with both independent molecules adopting a transtrans conformation. Compound (II) is a salt complex with weak C—H...Cl interactions giving rise to a zigzag network with π‐stacking down the a axis. Complex (III) lies across a twofold rotation axis in the C2/c space group. The CuII center in (III) has an N3O2 trigonal–bipyramidal environment. The nitrate ligand coordinates in a monodentate fashion, while the bap ligand adopts a twisted tridentate binding mode. C—H...O interactions give rise to a ribbon motif.  相似文献   

15.
The title bis(1,3,4‐trimethylpyridinium) tetrahalidocuprate(II) structures, (C8H12N)2[CuCl4], (I), and (C8H12N)2[CuBr4], (II), respectively, consist of flattened [CuX4]2− tetrahedral complex anions and planar 1,3,4‐trimethylpyridinium cations. Chloride compound (I) is a rare example of an A2CuCl4 structure with an elongated unit cell in the polar space group Fdd2. The [CuCl4]2− anions have twofold rotational symmetry and are arranged in distorted hexagonal close‐packed (hcp) layers, which are interleaved with layers of cations, each in a four‐layer repeat sequence, to generate the elongated axis. The organic cations stack along [101] or [10] in alternating layers. The methyl groups meta on the cation ring and the larger of the trans Cl—Cu—Cl angles both face the same direction along the polar axis and are the most prominent features determining the polarity of the structure. Bromide compound (II) crystallizes in a centrosymmetric structure with a similar layer structure but with only a two‐layer repeat sequence. Here, symmetry‐inequivalent cations are segregated into alternating layers with cations, forming hcp layers of inversion‐related cation pairs in one layer and parallel stacks of cations in the other. The change in space group when the larger Br ion is present suggests that the 1,3,4‐trimethylpyridinium ion has a minimal size to allow the Fdd2 A2CuX4 structure type.  相似文献   

16.
In the title compound, [Cu2Cl4(C6H10N8)2]n, the ligand has C2 symmetry, and the Cu and Cl atoms lie on a mirror plane. The coordination polyhedron of the Cu atom is a distorted square pyramid, with the basal positions occupied by two N atoms from two different ligands [Cu—N = 2.0407 (18) Å] and by the two Cl atoms [Cu—Cl = 2.2705 (8) and 2.2499 (9) Å], and the apical position occupied by a Cl atom [Cu—Cl = 2.8154 (9) Å] that belongs to the basal plane of a neighbouring Cu atom. The [CuCl2(C6H10N8)]2 units form infinite chains extending along the a axis via the Cl atoms. Intermolecular C—H⃛Cl contacts [C⃛Cl = 3.484 (2) Å] are also present in the chains. The chains are linked together by intermolecular C—H⃛N interactions [C⃛N = 3.314 (3) Å].  相似文献   

17.
The construction of supramolecular architectures based on inorganic–organic coordination frameworks with weak noncovalent interactions has implications for the rational design of functional materials. A new crystalline binuclear copper(II) one‐dimensional polymeric chain, namely catena‐poly[[[tetrakis(μ‐4‐azaniumylbutanoato‐κ2O :O ′)dicopper(II)(Cu Cu )]‐μ‐chlorido‐[diaquadichloridocopper(II)]‐μ‐chlorido] bis(perchlorate)], {[Cu3Cl4(C4H9NO2)4(H2O)2](ClO4)2}n , was obtained by the reaction of 4‐aminobutyric acid (GABA) with CuCl2·2H2O in aqueous solution. The structure was established by single‐crystal X‐ray diffraction and was also characterized by IR spectroscopy and magnetic measurements. The crystal structure consists of [{Cu2(GABA)4}{CuCl4(H2O)2}]+ cations and isolated perchlorate anions. Two symmetry‐related CuII centres are bridged via carboxylate O atoms into a classical paddle‐wheel configuration, with a Cu…Cu distance of 2.643 (1) Å, while bridging Cl atoms complete the square‐pyramidal geometry of the metal atoms. The Cl atoms connect the paddlewheel moieties to a second CuII atom lying on an octahedral site, resulting in infinite helical chains along the c axis. The packing motif exhibits channels containing free perchlorate anions. The crystal structure is stabilized by hydrogen bonds between the perchlorate anions, the coordinated water molecules and the ammonium groups of the polymeric chains. The magnetic analysis of the title compound indicates a nontrivial antiferromagnetic behaviour arising from alternating weak–strong antiferromagnetic coupling between neighbouring CuII centres.  相似文献   

18.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

19.
In the title complex, poly[copper(II)‐di‐μ‐5‐carboxy‐1H‐imidazole‐4‐carboxyl­ato], [Cu(C5H3N2O4)2]n or [Cu(H2Imda)2]n, each imidazole moiety is bonded to the Cu atom via O and N atoms to give a square‐planar coordination [Cu—O = 2.014 (2) and 2.016 (2) Å, and Cu—N = 1.982 (3) and 1.992 (2) Å]. The distorted square‐pyramidal geometry at the Cu atom results from coordination to an adjacent O atom [Cu—O = 2.305 (2) Å], which generates zigzag chains. There is a sixth, weaker, octahedral coordination to the Cu atom from an inversion‐related O atom [Cu—O = 3.090 (2) Å], which links the chains into sheets in the (100) plane. Imidazole moieties in the sheets are linked in the [100] direction by pairs of N—H⋯O and C—H⋯O hydrogen bonds, thus generating a three‐dimensional network.  相似文献   

20.
In the title cadmium chloride salt, (C3H5N4O2)4[CdCl6]·4H2O, the asymmetric unit comprises two N‐protonated 5‐amino‐3‐carboxy‐4H‐1,2,4‐triazol‐1‐ium cations, half a [CdCl6]4− anion and two molecules of water. The Cd2+ cation is located on a centre of inversion and is coordinated by six chloride anions, forming a distorted octahedron. In the crystal structure, alternating layers of cations and anions are arranged along the [101] direction, forming a three‐dimensional supramolecular network via a combination of hydrogen‐bonding and aromatic stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号