首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of a pincer ligand consists of a backbone and two `arms' which typically contain a P or N atom. They are tridentate ligands that coordinate to a metal center in a meridional configuration. A series of three iron complexes containing the pyrrole‐based PNP pincer ligand 2,5‐bis[(diisopropylphosphanyl)methyl]pyrrolide (PNpyrP) has been synthesized. These complexes are possible precursors to new iron catalysts. {2,5‐Bis[(diisopropylphosphanyl)methyl]pyrrolido‐κ3P ,N ,P ′}carbonylchlorido(trimethylphosphane‐κP )iron(II), [Fe(C18H34NP2)Cl(C3H9P)(CO)] or [Fe(PNpyrP)Cl(PMe3)(CO)], (I), has a slightly distorted octahedral geometry, with the Cl and CO ligands occupying the apical positions. {2,5‐Bis[(diisopropylphosphanyl)methyl]pyrrolido‐κ3P ,N ,P ′}chlorido(pyridine‐κN )iron(II), [Fe(C18H34NP2)Cl(C5H5N)] or [Fe(PNpyrP)Cl(py)] (py is pyridine), (II), is a five‐coordinate square‐pyramidal complex, with the pyridine ligand in the apical position. {2,5‐Bis[(diisopropylphosphanyl)methyl]pyrrolido‐κ3P ,N ,P ′}dicarbonylchloridoiron(II), [Fe(C18H34NP2)Cl(CO)2] or [Fe(PNpyrP)Cl(CO)2], (III), is structurally similar to (I), but with the PMe3 ligand replaced by a second carbonyl ligand from the reaction of (II) with CO. The two carbonyl ligands are in a cis configuration, and there is positional disorder of the chloride and trans carbonyl ligands.  相似文献   

2.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

3.
Achiral {2‐[2‐(η5‐cyclopentadienyl)‐2‐methylpropyl]‐1H‐imidazolyl‐κN1}bis(N,N‐diethylamido‐κN)titanium(IV), [Ti(C4H10N)2(C12H14N2)], (I), and closely related racemic (SR)‐{2‐[(η5‐cyclopentadienyl)(phenyl)methyl]‐1H‐imidazolyl‐κN1}bis(N,N‐diethylamido‐κN)titanium(IV), [Ti(C4H10N)2(C15H12N2)], (II), have been prepared by direct reactions of Ti(NEt2)4 and the corresponding 1H‐imidazol‐2‐yl side‐chain functionalized cyclopentadienes. In compound (II), there are two crystallographically independent molecules of very similar geometries connected by a noncrystallographic pseudosymmetry operation akin to a 21 screw axis. All Ti‐ligating N atoms in both (I) and (II) are in planar environments, which is indicative of an additional N→Ti pπ–dπ donation. This fact and the 18ē nature of both (I) and (II) are additionally supported by quantum chemical single‐point density functional theory (DFT) computations.  相似文献   

4.
A novel family of four 1‐bromo‐2,6‐bis{[(λ5‐phosphanylidene)imino]methyl}benzene ligands has been synthesized and characterized. The phosphiniminomethyl substituents are decorated with either three phenyl groups, two phenyl and one cyclohexyl group, one phenyl and two cyclohexyl groups, or three cyclohexyl groups. Each ligand was metallated using zero‐valent nickel through an oxidative addition to form a family of organonickel(II) complexes, namely (2,6‐bis{[(triphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) dichloromethane hemisolvate, [NiBr(C44H37N2P2)]·0.5CH2Cl2, (2,6‐bis{[(cyclohexyldiphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) diethyl ether hemisolvate, [NiBr(C44H49N2P2)]·0.5C4H10O, (2,6‐bis{[(dicyclohexylphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H61N2P2)], and (2,6‐bis{[(tricyclohexyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H73N2P2)]. This family of complexes represents a useful opportunity to investigate the impact of incrementally changing the steric characteristics of a complex on its structure and reactivity.  相似文献   

5.
The structures of dichloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}copper(II), [CuCl2(C12H12N4)], and di‐μ‐chloro‐bis(chloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}­cadmium(II)), [Cd2Cl4(C12H12N4)2], show that these compounds have the structural formula [ML(Cl)2]n, where L is 2‐[(5‐methylpyra­zolyl)methyl]benzimidazole. When M is copper, the complex is a monomer (n = 1), with a tetrahedral coordination for the Cu atom. When M is cadmium (n = 2), the complex lies about an inversion centre giving rise to a centrosymmetric dimer in which the Cd atoms are bridged by two chloride ions and are pentacoordinated.  相似文献   

6.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

7.
In the title compounds, {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐di­methyl‐1,3‐propane­diyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis­(salicyl­idene)‐2,2‐di­methyl‐1,3‐propane­diaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively.  相似文献   

8.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

9.
Reaction of N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide), C20H18F2N4O2, ( LF ), with zinc chloride and mercury(II) chloride produced different types and shapes of neutral coordination complexes, namely, dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ2N,O]zinc(II), [ZnCl2(C20H18F2N4O2)], ( 1 ), and dichlorido[N,N′‐(cyclohexane‐1,2‐diylidene)bis(4‐fluorobenzohydrazide)‐κ4O,N,N′,O′]mercury(II), [HgCl2(C20H18F2N4O2)], ( 2 ). The organic ligand and its metal complexes are characterized using various techniques: IR, UV–Vis and nuclear magnetic resonance (NMR) spectroscopies, in addition to powder X‐ray diffraction (PXRD), single‐crystal X‐ray crystallography and microelemental analysis. Depending upon the data from these analyses and measurements, a typical tetrahedral geometry was confirmed for zinc complex ( 1 ), in which the ZnII atom is located outside the bis(benzhydrazone) core. The HgII atom in ( 2 ) is found within the core and has a common octahedral structure. The in vitro antibacterial activities of the prepared compounds were evaluated against two different bacterial strains, i.e. gram positive Bacillus subtilis and gram negative Pseudomonas aeruginosa bacteria. The prepared compounds exhibited differentiated growth‐inhibitory activities against these two bacterial strains based on the difference in their lipophilic nature and structural features.  相似文献   

10.
Two new mononuclear coordination compounds, bis{4‐[(hydroxyimino)methyl]pyridinium} diaquabis(pyridine‐2,5‐dicarboxylato‐κ2N,O2)zincate(II), (C6H7N2O)2[Zn(C7H3NO4)2(H2O)2], (1), and (pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)bis[N‐(pyridin‐4‐ylmethylidene‐κN)hydroxylamine]zinc(II), [Zn(C7H3NO4)(C6H6N2O)2], (2), have been synthesized and characterized by single‐crystal X‐ray diffractometry. The centrosymmetric ZnII cation in (1) is octahedrally coordinated by two chelating pyridine‐2,5‐dicarboxylate ligands and by two water molecules in a distorted octahedral geometry. In (2), the ZnII cation is coordinated by a tridentate pyridine‐2,6‐dicarboxylate dianion and by two N‐(pyridin‐4‐ylmethylidene)hydroxylamine molecules in a distorted C2‐symmetric trigonal bipyramidal coordination geometry.  相似文献   

11.
The unsymmetrical N‐heterocyclic ligand 1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole (bmi) has three potential N‐atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self‐assembly of bmi with HgBr2 or HgI2. Single‐crystal X‐ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three‐dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.  相似文献   

12.
A new nano‐sized rigid double‐armed oxadiazole‐bridged organic ligand, 2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl)ethenyl]phenyl}‐1,3,4‐oxadiazole, C30H20N4O, L or (I), which adopts a cis conformation in the solid state, has been synthesized and used to create the two novel metallocycle complexes (2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)diiodidocadmium(II) dichloromethane monosolvate, [CdI2(C30H20N4O)]·CH2Cl2, (II), and di‐μ‐iodido‐bis[(2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)copper(I)], [Cu2I2(C30H20N4O)2], (III). Molecules of complex (II) adopts a 20‐membered `0'‐shaped metallocycle structure with crystallographic mirror symmetry. The discrete units are linked into one‐dimensional chains through intermolecular π–π and C—H...π interactions. In (III), the two I atoms and two CuI atoms form a {Cu2(μ‐I)2} cluster. One {Cu2(μ‐I)2} cluster and two L ligands form two 20‐membered monometallic rings in a head‐to‐head fashion, leading to a discrete centrosymmetric `8'‐shaped metallocyclic complex. These metallocycles stack together via two kinds of intermolecular π–π interactions to generate a two‐dimensional network in the ac plane. The luminescence properties of (I)–(III) were investigated in the solid state at room temperature and displayed an obvious red shift.  相似文献   

13.
Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen‐bond acceptors and donors in the assembly of supramolecular structures. Nitrogen‐heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (I), and catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}nickel(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one‐dimensional chains are further connected through O—H…O, O—H…N and N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.  相似文献   

14.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

15.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

16.
Platinum antitumour agents, containing aromatic rings, which are used for targeting DNA in effective therapies for the treatment of cancer. We have synthesized the title metallocomplex with an aromatic ligand and determined its crystal structure. In many cases, complexes of platinum and other metals have a symmetrical structure. In contrast, the platinum(II) complex with pyridine and N‐(9‐anthracenylmethyl)‐1,2‐ethanediamine as ligands (systematic name: cis‐{N‐[(anthracen‐9‐yl)methyl]ethane‐1,2‐diamine‐κ2N ,N ′}bis(pyridine‐κN )platinum(II) dinitrate), [Pt(C5H5N)2(C17H18N2)](NO3)2, is asymmetric. Of the two pyridine ligands, only one is π‐stacked with anthracene, resulting in an asymmetric structure. Moreover, the angle of orientation of each pyridine ligand is variable. Further examination of the packing motif confirms an intermolecular edge‐to‐face interaction.  相似文献   

17.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

18.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

19.
20.
Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}(thiocyanato‐κN)(triphenylphosphane‐κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and 1H NMR spectroscopy, and X‐ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with a trans conformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinating via the imine N atoms to the CuI atom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattened gauche conformation, resulting in a rather bowed shape overall for the ligand. The NCS ligand is coordinated through its N atom. The geometry around the CuI atom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号