首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsymmetrical N‐heterocyclic ligand 1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole (bmi) has three potential N‐atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self‐assembly of bmi with HgBr2 or HgI2. Single‐crystal X‐ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three‐dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.  相似文献   

2.
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state.  相似文献   

3.
Metal–organic frameworks (MOFs) based on multidentate N‐heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzimidazole (tmb) ligand has four potential N‐atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen‐bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three‐dimensional coordination polymer, poly[[bis(μ2‐benzene‐1,4‐dicarboxylato)‐κ4O1,O1′:O4,O4′2O1:O4‐bis{μ2‐2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl‐κN4]‐1H‐benzimidazole‐κN3}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene‐1,4‐dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic2− ligands [bdic2−(A) and bdic2−(B)] in the structure which adopt different coordination modes. The ZnII ions are bridged by tmb ligands, leading to one‐dimensional helical chains with different handedness, and adjacent helices are linked by bdic2−(A) ligands, forming a two‐dimensional network structure. The two‐dimensional layers are further connected by bdic2−(B) ligands, resulting in a three‐dimensional framework with the topological notation 66. The IR spectra and thermogravimetric curves are consistent with the results of the X‐ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature.  相似文献   

4.
In the construction of coordination polymers, many factors can influence the formation of the final architectures, such as the nature of the metal centres, the organic ligands and the counter‐anions. In the coordination polymer poly[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ4O 1,O 1′:O 2,O 2′)[μ‐2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole‐κ2N 2:N 3]cadmium(II)], [Cd(C12H12N4)(C8H4O4)(H2O)]n or [Cd(immb)(1,2‐bdic)(H2O)]n , each CdII ion is seven‐coordinated by two N atoms from two symmetry‐related 2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole (immb) ligands, by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and by one water molecule, leading to a CdN2O5 distorted pentagonal bipyramidal coordination environment. The immb and 1,2‐bdic2− ligands bridge CdII ions and form a two‐dimensional network structure. O—H…O and N—H…O hydrogen bonds stabilize the structure. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviour and fluorescence properties of the title polymer have been investigated.  相似文献   

5.
The N‐heterocyclic ligand 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena‐poly[[cadmium(II)‐bis[μ‐benzene‐1,2‐dicarboxylato‐κ4O1,O1′:O2,O2′]‐cadmium(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N2:N32N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and two N atoms from two symmetry‐related imb ligands. Two CdII ions are connected by two benzene‐1,2‐dicarboxylate ligands to generate a binuclear [Cd2(1,2‐bdic)2] unit. The binuclear units are further connected into a one‐dimensional chain by pairs of bridging imb ligands. These one‐dimensional chains are further connected through N—H…O hydrogen bonds and π–π interactions, leading to a two‐dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

6.
Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen‐bond acceptors and donors in the assembly of supramolecular structures. Nitrogen‐heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (I), and catena‐poly[[[diaquabis{2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole‐κN 3}nickel(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O}n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2‐[(1H‐imidazol‐1‐yl)methyl]‐6‐methyl‐1H‐benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one‐dimensional chains are further connected through O—H…O, O—H…N and N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.  相似文献   

7.
Coordination polymers are a thriving class of functional solid‐state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self‐assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro(solvo)thermal conditions. 2‐(Pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aquabis[μ3‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2‐(pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PIDC) and copper(II) chloride under hydrothermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water molecule. The CuII centre displays a square‐pyramidal geometry (CuN2O3), with two N,O‐chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water molecule in the axial position. The CuI atoms adopt three‐coordinated Y‐shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O‐chelating ligand, and a symmetry‐equivalent HPIDC2− ligand acts as an N‐atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T‐shaped 3‐connectors and adopt a μ3‐κ2N,O2N′,O′:κN′′‐coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one‐dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two‐dimensional polymer in the (100) plane. The resulting (2,3)‐connected net has a (123)2(12)3 topology. Powder X‐ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.  相似文献   

8.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

9.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

10.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion‐symmetric ligand 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (abbreviated as H2bttpa) links CdII cations, giving rise to the three‐dimensional CdII coordination polymer catena‐poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato‐κ4O1:O4:N4:N4′]cadmium(II)], [Cd(C12H6N6O4)(H2O)2]n or [Cd(bttpa)(H2O)2]n. The asymmetric unit consists of half a CdII cation, half a bttpa2− ligand and one coordinated water molecule. The CdII cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa2− ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa2− ligand sits about a crystallographic centre of inversion and links two CdII cations to form a chain in a μ2‐terephthalato‐κ2O1:O4 bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three‐dimensional framework. O—H…O hydrogen bonds and weak C—H…N interactions stabilize the three‐dimensional crystal structure. The FT–IR spectrum, X‐ray powder pattern, thermogravimetric behaviour and solid‐state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red‐shifted with respect to the uncoordinated ligand.  相似文献   

11.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

12.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

13.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

14.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

15.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

16.
Multidentate N‐heterocyclic compounds form a variety of metal complexes with many intriguing structures and interesting properties. The title coordination polymer, catena‐poly[zinc(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N3:N3′;N3′:N3‐zinc(II)‐bis(μ‐benzene‐1,2‐dicarboxylato)‐κ2O1:O23O1,O1′:O2], [Zn2(C8H4O4)2(C11H10N4)2]n, has been synthesized by the reaction of Zn(NO3)2 with 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) and benzene‐1,2‐dicarboxylic acid (H2bdic) under hydrothermal conditions. There are two crystallographically distinct imb ligands [imb(A) and imb(B)] in the structure which adopt very similar coordination geometries. The imb(A) ligand bridges two symmetry‐related Zn1 ions, yielding a binuclear [(Zn1)2{imb(A)}2] unit, and the imb(B) ligand bridges two symmetry‐related Zn2 ions resulting in a binuclear [(Zn2)2{imb(B)}2] unit. The above‐mentioned binuclear units are further connected alternately by pairs of bridging bdic2− ligands, forming an infinite one‐dimensional chain. These one‐dimensional chains are further connected through N—H...O hydrogen bonds, leading to a two‐dimensional layered structure. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

17.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

18.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

19.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

20.
The CdII three‐dimensional coordination poly[[[μ4‐1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene]bis(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato)dicadmium(II)] dihydrate], {[Cd2(C9H4O6)2(C8H10N6)]·2H2O}n , (I), has been synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O, benzene‐1,3,5‐tricarboxylic acid (1,3,5‐H3BTC) and 1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene (1,4‐btbe). The IR spectrum suggests the presence of protonated carboxylic acid, deprotonated carboxylate and triazolyl groups. The purity of the bulk sample was confirmed by elemental analysis and X‐ray powder diffraction. Single‐crystal X‐ray diffraction analysis reveals that the CdII ions adopt a five‐coordinated distorted trigonal–bipyramidal geometry, coordinated by three O atoms from three different 1,3,5‐HBTC2− ligands and two N atoms from two different 1,4‐btbe ligands; the latter are situated on centres of inversion. The CdII centres are bridged by 1,3,5‐HBTC2− and 1,4‐btbe ligands into an overall three‐dimensional framework. When the CdII centres and the tetradentate 1,4‐btbe ligands are regarded as nodes, the three‐dimensional topology can be simplified as a binodal 4,6‐connected network. Thermogravimetric analysis confirms the presence of lattice water in (I). Photoluminescence studies imply that the emission of (I) may be ascribed to intraligand fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号