首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A–NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A–NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A–NBC reactivation, RNase A–NBC shows a significant specific cytotoxicity against tumor cells.  相似文献   

2.
Multivalent mannose‐functionalized nanoparticles self‐assembled from amphiphilic β‐cyclodextrins (β‐CDs) facilitate the targeted delivery of anticancer drugs to specific cancer cells. Doxorubicin (DOX)‐loaded nanoparticles equipped with multivalent mannose target units were efficiently taken up via receptor‐mediated endocytosis by MDA‐MB‐231 breast cancer cells that overexpress the mannose receptor. Upon entering the cell, the intracellular pH causes the release of DOX, which triggers apoptosis. Targeting by multivalent mannose significantly improved the capability of DOX‐loaded nanoparticles to inhibit the growth of MDA‐MB‐231 cancer cells with minimal side effects in vivo. This targeted and controlled drug delivery system holds promise as a nanotherapeutic for cancer treatment.  相似文献   

3.
Platinum anticancer drugs are particularly in need of controlled drug delivery because of their severe side effects. Platinum(IV) agents are designed as prodrugs to reduce the side effects of platinum(II) drugs; however, premature reduction could limit the effect as a prodrug. In this work, a highly biocompatible, pH and redox dual‐responsive delivery system is prepared by using hybrid nanoparticles of human serum albumin (HSA) and calcium phosphate (CaP) for the PtIV prodrug of cisplatin. This conjugate is very stable under extracellular conditions, so that it protects the platinum(IV) prodrug in HSA. Upon reaching the acidic and hypoxic environment, the platinum drug is released in its active form and is able to bind to the target DNA. The Pt–HSA/CaP hybrid inhibits the proliferation of various cancer cells more efficiently than cisplatin. Different cell cycle arrests suggest different cellular responses of the PtIV prodrug in the CaP nanocarrier. Interestingly, this delivery system demonstrates enhanced cytotoxicity to tumor cells, but not to normal cells.  相似文献   

4.
5.
6.
A combination of chemo‐ and photothermal therapy has emerged as a promising tactic for cancer therapy. However, the intricacy of accurate delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Hence, to assure that the chemotherapeutic drug and photothermal agent are synchronously delivered to a tumor area for their synergistic effect, dual‐target (RC‐12 and PG‐6 peptides) functionalized selenium nanoparticles loaded with both doxorubicin (DOX) and indocyanine green (ICG) were designed and successfully synthesized. The as‐synthesized nanoparticles exhibited good monodispersity, size stability, and consistent spectral characteristics compared with those of ICG or DOX alone. The nanoparticles underwent self‐immolated cleavage under irradiation from a near‐IR laser and released the loaded drug owing to sufficient hyperthermia. Moreover, the internalized nanoparticles triggered the overproduction of intracellular reactive oxygen species to induce cell apoptosis. Taken together, this study provides a sequentially triggered nanosystem to achieve precise drug delivery by chemo‐photothermal combination.  相似文献   

7.
Malignant tumors remain a major health burden throughout the world and effective therapeutic strategies are urgently needed. Herein, we report the synthesis of upconverting nanoparticles with a mesoporous TiO2 (mTiO2) shell for near‐infrared (NIR)‐triggered drug delivery and synergistic targeted cancer therapy. The NaGdF4:Yb,Tm could convert NIR light to UV light, which activated the mTiO2 to produce reactive oxygen species for photodynamic therapy (PDT). Due to the large surface area and porous structure, the mTiO2 shell endowed the nanoplatform with another functionality of anticancer drug loading for chemotherapy. The hyaluronic acid modified on the surface not only promised controlled drug release but also conferred targeted ability of the system toward cluster determinant 44 overexpressed cancer cells. More importantly, cytotoxicity experiments demonstrated that combined therapy mediated the highest rate of death of breast carcinoma cells compared with that of single chemotherapy or PDT.  相似文献   

8.
In this study, double‐emulsion capsules (DECs) capable of concealing drug‐incorporated targeted‐supermolecules are developed to achieve “on‐demand” supermolecule release and enhanced sequential targeting for magneto‐chemotherapy. These water‐in‐oil‐in‐water DECs less than 200 nm in diameter are synthesized using a single component of PVA (polyvinyl alcohol) polymer and the magnetic nanoparticles, which are capable of encapsulating large quantities of targeted supermolecules composed of palitaxel‐incorporated beta‐cyclodextrin decorated by hyaluronic acid (HA, a CD44‐targeting ligand) in the watery core. The release profiles (slow, sustained and burst release) of the targeted supermolecules can be directly controlled by regulating the high‐frequency magnetic field (HFMF) and polymer conformation without sacrificing the targeting ability. Through an intravenous injection, the positive targeting of the supermolecules exhibited a 20‐fold increase in tumor accumulation via the passive targeting and delivery of DECs followed by positive targeting of the supermolecules. Moreover, this dual‐targeting drug‐incorporated supermolecular delivery vehicle at the tumor site combined with magneto‐thermal therapy suppressed the cancer growth more efficiently than treatment with either drug or supermolecule alone.

  相似文献   


9.
10.
Hydrophobicity has been an obstacle that hinders the use of many anticancer drugs. A critical challenge for cancer therapy concerns the limited availability of effective biocompatible delivery systems for most hydrophobic therapeutic anticancer drugs. In this study, we have developed a targeted near‐infrared (NIR)‐regulated hydrophobic drug‐delivery platform based on gold nanorods incorporated within a mesoporous silica framework (AuMPs). Upon application of NIR light, the photothermal effect of the gold nanorods leads to a rapid rise in the local temperature, thus resulting in the release of the entrapped drug molecules. By integrating chemotherapy and photothermotherapy into one system, we have studied the therapeutic effects of camptothecin‐loaded AuMP‐polyethylene glycol‐folic acid nanocarrier. Results revealed a synergistic effect in vitro and in vivo, which would make it possible to enhance the therapeutic effect of hydrophobic drugs and decrease drug side effects. Studies have shown the feasibility of using this nanocarrier as a targeted and noninvasive remote‐controlled hydrophobic drug‐delivery system with high spatial/temperal resolution. Owing to these advantages, we envision that this NIR‐controlled, targeted drug‐delivery method would promote the development of high‐performance hydrophobic anticancer drug‐delivery system in future clinical applications.  相似文献   

11.
Colorectal cancer (CRC) is a usual digestive tract malignancy and the third main cause of cancer death around the world, with a high occurrence rate and mortality rate. Conventional therapies for CRC have certain side effects and restrictions. However, the exciting thing is that with the rapid development of nanotechnology, nanoparticles have gradually become more valuable drug delivery systems than traditional therapies because of their capacity to control drug release and target CRC. This also promotes the application of nano-drug targeted delivery systems in the therapy of CRC. Moreover, to make nanoparticles have a better colon targeting effect, many approaches have been used, including nanoparticles targeting CRC and in response to environmental signals. In this review, we focus on various targeting mechanisms of CRC-targeted nanoparticles and their latest research progress in the last three years, hoping to give researchers some inspiration on the design of CRC-targeted nanoparticles.  相似文献   

12.
13.
A targeted micellar drug delivery system is developed from a biocompatible and biodegradable amphiphilic polyester, poly(Lac‐OCA)‐b‐(poly(Tyr(alkynyl)‐OCA)‐g‐mannose) (PLA‐b‐(PTA‐g‐mannose), that is synthesized via controlled ring‐opening polymerization of O‐carboxyanhydride (OCA) and highly efficient “Click” chemistry. Doxorubicin (DOX), a model lipophilic anticancer drug, can be effectively encapsulated into the micelles, and the mannose moiety allows active targeting of the micelles to cancer cells that specifically express mannose receptors, which thereafter enhances the anticancer efficiency of the drug. Comprised entirely of biodegradable and biocompatible polyesters, this micellar system demonstrates promising potentials for targeted drug delivery and cancer therapy.

  相似文献   


14.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

15.
Biodegradable self‐assembled polymeric nanoparticles (NPs) composed of poly(6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(L‐lactide)‐b‐poly(6‐O‐methacryloyl‐D‐galactopyranose) (PMAGP‐b‐PLA‐b‐PMAGP) are prepared as carriers for the hydrophobic anticancer drug paclitaxel (PTX), to achieve target delivery to hepatoma cells. PTX can be encapsulated by the NPs with various molar ratios of L‐lactide (LA) and 6‐O‐methacryloyl‐D‐galactopyranose (MAGP) during the process of self‐assembly, and the resulting NPs exhibit high drug loading efficacy and substantial stability in aqueous solution. The size, size distribution, and morphology of the NPs are characterized using a Zetasizer Nano ZS and transmission electron microscopy. The hemolysis assay and cell cytotoxicity assay indicate that the polymeric NPs are biocompatible and non‐toxic. The cellular uptake assay demonstrates that the galactose‐containing NPs can be selectively recognized and subsequently accumulate in HepG2 cells. All of these results demonstrate that galactose‐containing polymeric NPs are potential carriers for hepatoma‐targeted drug delivery and liver cancer therapy in clinical medicine.

  相似文献   


16.
Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg−1] versus DLNs-based chemotherapy [0.75 mg kg−1]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.  相似文献   

17.
In this paper, we present a facile strategy to synthesize hyaluronic acid (HA) conjugated mesoporous silica nanoparticles (MSP) for targeted enzyme responsive drug delivery, in which the anchored HA polysaccharides not only act as capping agents but also as targeting ligands without the need of additional modification. The nanoconjugates possess many attractive features including chemical simplicity, high colloidal stability, good biocompatibility, cell‐targeting ability, and precise cargo release, making them promising agents for biomedical applications. As a proof‐of‐concept demonstration, the nanoconjugates are shown to release cargoes from the interior pores of MSPs upon HA degradation in response to hyaluronidase‐1 (Hyal‐1). Moreover, after receptor‐mediated endocytosis into cancer cells, the anchored HA was degraded into small fragments, facilitating the release of drugs to kill the cancer cells. Overall, we envision that this system might open the door to a new generation of carrier system for site‐selective, controlled‐release delivery of anticancer drugs.  相似文献   

18.
Targeted drug delivery systems have attracted increasing attention due to their ability for delivering anticancer drugs selectively to tumor cells. Folic acid (FA)‐conjugated targeted block copolymers, FA‐Pluronic‐polycaprolactone (FA‐Pluronic‐PCL) are synthesized in this study. The anticancer drug paclitaxel (PTX) is loaded in FA‐Pluronic‐PCL nanoparticles by nanoprecipitation method. The in vitro release of PTX from FA‐Pluronic‐PCL nanoparticles shows slow and sustained release behaviors. The effect of FA ligand density of FA‐Pluronic‐PCL nanoparticles on their targeting properties is examined by both cytotoxicity and fluorescence methods. It is shown that FA‐Pluronic‐PCL nanoparticles indicated better targeting ability than non‐targeted PCL‐Pluronic‐PCL nanoparticles. Furthermore, FA‐F127‐PCL nanoparticle with 10% FA molar content has more effective antitumor activity and higher cellular uptake than those with 50% and 91% FA molar content. These results prove that FA‐F127‐PCL nanoparticle with 10% FA molar content can be a better candidate as the drug carrier in targeted drug delivery systems.  相似文献   

19.
20.
We report a novel dual drug‐tailed phospholipid which can form liposomes as a combination of prodrug and drug carrier. An amphiphilic dual chlorambucil‐tailed phospholipid (DCTP) was synthesized by a straightforward esterification. With two chlorambucil molecules as hydrophobic tails and one glycerophosphatidylcholine molecule as a hydrophilic head, the DCTP, a phospholipid prodrug, undergoes assembly to form a liposome without any additives by the thin lipid film technique. The DCTP liposomes, as an effective carrier of chlorambucil, exhibited a very high loading capacity and excellent stability. The liposomes had higher cytotoxic effects to cancer cell lines than free DCTP and chlorambucil. The in vivo antitumor activity assessment indicated that the DCTP liposomes could inhibit the tumor growth effectively. This novel strategy of dual drug‐tailed phospholipid liposomes may be also applicable to other hydrophobic anticancer drugs which have great potential in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号