首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chinese nonmulberry temperate oak tasar/tussah, Antheraea pernyi (Ap) silk is a natural biopolymer that has attracted considerable attention as a biomaterial. The proteinaceous components of Ap silk proteins, namely fibroin and sericin may represent an alternative over mulberry Bombyx mori silk proteins. In fact, the silk fibroin (SF) of Ap is rich in Arginyl‐Glycyl‐Aspartic acid (RGD) peptides, which facilitate the adhesion and proliferation of various cell types. The possibility of processing Ap silk proteins into different distinct 2D‐ and 3D‐based matrices is described in earlier studies, such as membranes, nanofibers, scaffolds, and micro/nanoparticles, contributing to a different rate of degradation, mechanical properties, and biological performance useful for various biomedical applications. This review summarizes the current advances and developments on nonmulberry Chinese oak tasar silk protein (fibroin and sericin)‐based biomaterials and their potential uses in tissue engineering, regenerative medicine, and therapeutic delivery strategies.  相似文献   

2.
Recently, the issue of cancer has attracted extensive attention. Early diagnosis and timely therapy are important for cancer treatment. And lots of advanced fluorescent probes have been applied to cancer theranostics. However, the further development of these probes is limited by the disadvantages of poor targeting, weak sensitivity and photobleaching. Fortunately, the emergence of biomolecule‐conjugated fluorescent probes with aggregation‐ induced emission properties has taken innovative impetus to the cancer theranostics. This review summarizes the rational fabrication and biomedical applications of biomolecule‐conjugated AIE luminogens (AIEgens) based on “click reaction” over the past decade. In the meantime, the challenges of biomolecule‐conjugated AIEgens in the field of biomedicine are also discussed.  相似文献   

3.
4.
《中国化学会会志》2018,65(2):231-242
A stable and biocompatible targeting complex CFNs@PEG‐FA is developed. The initially synthesized cobalt ferrite nanoparticles (CFNs) were treated with poly(ethylene glycol) (PEG) in order to improve biocompatibility of the CFNs. Citric acid (CA) was used as the coupling agent, which made PEG to bond with the CFNs. CFNs@PEG were conjugated with folic acid (FA) to synthesize CFNs@PEG‐FA, which was capable of targeting the FA receptor positive (FAR+) cancer cells. Synthesized nanoparticles were physically and chemically analyzed using EDX, FT‐IR, XRD, TGA, FESEM, TEM, DLS, and VSM. The biocompatibility of CFNs@PEG‐FA was assessed in vitro on HSF 1184 (human skin fibroblast cells) and HeLa (human cervical cancer cell, FAR+) using MTT assay and AO/EB staining florescence method. High level of CFNs@PEG‐FA binding to HeLa was confirmed through quantitative and qualitative in vitro targeting studies. Results show that CFNs@PEG‐FA can be a potential biomaterial for use in biomedical trials, especially magnetic hyperthermia. The findings through this in vitro study are to be compared in future with those of in vivo studies.  相似文献   

5.
在包裹了聚电解质的碳酸钙微球上原位聚合苯胺,形成导电性良好的聚苯胺-聚电解质-碳酸钙(PAN/(PEs)6/CaCO3)微球。 采用扫描电子显微镜研究了聚电解质层对碳酸钙微球形貌的影响,以及苯胺单体加入量对碳酸钙-聚电解质-聚苯胺导电复合材料形貌的影响。 并用红外光谱和紫外-可见光谱等进行了结构表征。 该复合材料有良好的电催化活性,将其滴涂在玻碳电极上,修饰电极对多巴胺氧化显示了较强的催化能力,与碳酸钙修饰电极相比,其氧化峰电位负移了130 mV,平行制作5支修饰电极测定4.0 mmol/L多巴胺,相对标准偏差为4.2%。 该复合材料制备简单、重现性良好,可以构建测定多巴胺的传感器。 线性范围0.5~10.0 mmol/L,检测限0.2 mmol/L(3S/N)。  相似文献   

6.
Oxidative coupling reaction of 1‐hexyl–3,4‐dimethylpyrrole affords a conjugated conducting poly(1‐hexyl‐3,4‐dimethyl‐2,5‐pyrrolylene) (PHDP), which is completely soluble in common organic solvents. The luminescence of PHDP is comparable to that of poly(N‐vinylcarbazole) (PVK), which has been widely used in electroluminescence devices. The quantum efficiency of PHDP is 2.5 times higher than that of PVK. A rationalization is presented relating the conductivity of PHDP to its polymer structure.  相似文献   

7.
8.
纳米级金膜微电极的制作,表征及异相催化反应   总被引:1,自引:0,他引:1  
报道了纳米级金膜微电极的制作方法,用XPS及SEM对电极表面进行了表征,考察了该电极的循环伏安及计时电流特性,在聚吡咯修饰微带金电极上成功地实现了葡萄糖氧化酶和电子传递媒体Fe(CN)6^3-的同时固定,并研究了GOD/Fe(CN)6^3-/PPy微酶电极对葡萄糖的响应,稳态响应电流与葡萄糖浓度之间存在Michealis-Menten动力学特征。  相似文献   

9.
In recent years, hydrogels have been widely used as drug carriers, especially in the area of protein delivery. The natural silk fibroin produced from cocoons of the Bombyx mori silkworm possesses excellent biocompatibility, significant bioactivity, and biodegradability. Therefore, silk fibroin-based hydrogels are arousing widespread interest in biomedical research. In this study, a process for extracting natural silk fibroin from raw silk textile yarns was established, and three aqueous solutions of silk fibroin with different molecular weight distributions were successfully prepared by controlling the degumming time. Silk fibroin was dispersed in the aqueous solution as “spherical” aggregate particles, and the smaller particles continuously accumulated into large particles. Finally, a silk fibroin hydrogel network was formed. A rheological analysis showed that as the concentration of the silk fibroin hydrogel increased its storage modulus increased significantly. The degradation behavior of silk fibroin hydrogel in different media verified its excellent stability, and the prepared silk fibroin hydrogel had good biocompatibility and an excellent drug-loading capacity. After the protein model drug BSA was loaded, the cumulative drug release within 12 h reached 80%. We hope that these investigations will promote the potential utilities of silk fibroin hydrogels in clinical medicine.  相似文献   

10.
Since 6‐isopropyl‐ ( 11 ) and 6‐isobutyl‐2H‐benzo[b][1,4]dioxepin‐3(4H)‐one ( 12 ) instead of the expected marine odor had been reported to possess lily‐of‐the‐valley notes, albeit weaker than benchmark odorants, the influence of a cyclopropyl ring instead of a methyl branching on the olfactory properties was investigated. 6‐Cyclopropyl‐ ( 27 ), 6‐(2′‐methylcyclopropyl)‐ ( 32 ) and 6‐(cyclopropylmethyl)‐2H‐benzo[b][1,4]dioxepin‐3(4H)‐one ( 39 ) were thus synthesized from 2,3‐dimethoxybenzaldehyde ( 22 ) by a synthetic sequence consisting of Wittig methylenation/ethylenation/homologation with (methoxymethyl)triphenylphosphonium chloride, followed by cyclopropanation, demethylation, Williamson etherification with 3‐chloro‐2‐(chloromethyl)prop‐1‐ene, and Katsuki–Sharpless oxidation. The odor thresholds of the target structures 27 , 32 , and 39 , which are all floral‐green lily‐of‐the‐valley odorants, lie in the range of that of Lilial ( 1 ), with the 6‐cyclopropyl derivative 27 being the most potent (th 0.065 ng/l air). Particularly impressive was the close resemblance of the 6‐(cyclopropylmethyl) derivative 39 with Bourgeonal ( 3 ), which was rationalized by a superposition analysis.  相似文献   

11.
Three polyacetylenes, one novel and two known, were isolated from the root of Angelica tenuissima. Using 1H‐ and 13C‐NMR, COSY, HMBC, and HMQC, their structures were found to be (3R,8S)‐heptadeca‐1‐en‐4,6‐diyne‐3,8‐diol ( 1 ), falcarindiol ( 2 ), and oplopandiol ( 3 ). Absolute configurations of compound 1 were established using Mosher's esterification. In addition, the polyacetylenes ( 1 – 3 ) were evaluated for their anti‐inflammatory activity. Compounds 1 and 3 showed potent inhibitory activity against lipopolysaccharide‐induced nitric oxide (NO) production in RAW267.7 macrophage cells with IC50 values of 4.31 and 5.06 μm, respectively. Compound 1 strongly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)‐2 in a concentration‐dependent manner.  相似文献   

12.
New biomaterials with the properties of both bone and cartilage extracellular matrices (ECM) should be designed and used with co‐culture systems to address clinically applicable osteochondral constructs. Herein, a co‐culture model is described based on a trilayered silk fibroin‐peptide amphiphile (PA) scaffold cultured with human articular chondrocytes (hACs) and human bone marrow mesenchymal stem cells (hBMSCs) in an osteochondral cocktail medium for the cartilage and bone sides, respectively. The presence of hACs in the co‐cultures significantly increases the osteogenic differentiation potential of hBMSCs based on ALP activity, RT‐PCR for osteogenic markers, calcium analyses, and histological stainings, whereas hACs produces a significant amount of glycosaminoglycans (GAGs) for the cartilage region, even in the absence of growth factor TGF‐β family in the co‐culture medium. This trilayered scaffold with trophic effects offers a promising strategy for the study of osteochondral defects.

  相似文献   


13.
A novel conjugated copolymer has been synthesized and employed as an organic cathode material in rechargeable lithium–ion batteries (LIBs). Due to the synergistic effects from conducting aniline and pyrene units, the resultant batteries based on the as‐obtained copolymer can deliver a promising reversible specific capacity of 113 mAh g?1 with a high voltage output of 3.2 V and a remarkable 75.2 % capacity retention after 180 cycles. Moreover, an excellent rate performance is also achieved with a fast recovery of the capacity at different current densities.  相似文献   

14.
《中国化学会会志》2017,64(2):217-223
A facile, anion‐induced, one‐pot solvothermal method was successfully developed to prepare two kinds of highly dispersed magnetic Fe3O4 submicrometer spheres at 200°C in 12 h. The diameters of the as‐prepared Fe3O4 submicrometer spheres are ~500 and ~200 nm, respectively. With the guidance of OAc ions, the size and morphology of the Fe3O4 spheres could be well controlled. The saturation magnetization of the Fe3O4 spheres was measured to be 84 and 74 emu/g, respectively. The assembly of tiny precursor nuclei into the Fe3O4 spheres relies on Ostwald ripening. The synthesized Fe3O4 submicrometer spheres show good magnetic response, good water solubility, and uniform size.  相似文献   

15.
In this report, we describe the characterizations and applications of hybrid nanoparticles. These nanoparticles have been synthesized by combination of organometallic, polymerization process and functionalized with a specific peptide for targeting expressed serpin‐enzyme complex (SEC) receptor of human hepatoma HepG2 cells. By using peptide conjugated hybrid nanoparticles, the specific receptor targeting, collections of cells were successfully achieved. The cell collection results indicated that, the maximum up to 95.32% of HepG2 cell were collected. The 5‐dimethylthiazol‐2‐yl‐2,5‐diphenyltetrazolium bromide (MTT) assay of HepG2 cells incubated with these nanoparticles indicated that, the peptide conjugated hybrid nanoparticles did not possess significant cytotoxicity. The rotating magnetic field induced cell death studies indicated that, the HepG2 cell showed up to 70% of cell death was induced by hybrid nanoparticles under magnetic field. Concluding, these studies demonstrate that the hybrid nanoparticles have the capability of effective separation, imaging, targeting and killing of the human hepatoma cells.  相似文献   

16.
Well‐controlled nanostructures and a high fraction of Sn/Li2O interface are critical to enhance the coulombic efficiency and cyclic performance of SnO2‐based electrodes for lithium‐ion batteries (LIBs). Polydopamine (PDA)‐coated SnO2 nanocrystals, composed of hundreds of PDA‐coated “corn‐like” SnO2 nanoparticles (diameter ca. 5 nm) decorated along a “cob”, addressed the irreversibility issue of SnO2‐based electrodes. The PDA‐coated SnO2 were crafted by capitalizing on rationally designed bottlebrush‐like hydroxypropyl cellulose‐graft‐poly (acrylic acid) (HPC‐g ‐PAA) as a template and was coated with PDA to construct a passivating solid‐electrolyte interphase (SEI) layer. In combination, the corn‐like nanostructure and the protective PDA coating contributed to a PDA‐coated SnO2 electrode with excellent rate capability, superior long‐term stability over 300 cycles, and high Sn→SnO2 reversibility.  相似文献   

17.
A new composite catalyst AgBr/CaMoO4 was successfully fabricated by loading AgBr nanoparticles on CaMoO4 support via a convenient precipitation/deposition method, without any controlling agent and template. The microstructure, chemical composition, and morphologies of the AgBr/CaMoO4 were characterized by X‐ray diffraction, Fourier transform infrared, X‐ray photoelectron spectroscopy, and scanning electron microscopy. A series of comparative experiments showed that the composite AgBr/CaMoO4 exhibits higher catalytic activity than pure AgBr or CaMoO4 for the reduction of p‐nitrophenol (4‐NP). Moreover, the AgBr content greatly impacted the catalytic activity of composite AgBr/CaMoO4 . The conversion rate of 4‐NP with AgBr/CaMoO4 ‐5% as catalyst could reach 100% within only 4 min, which might be attributed to more number of available active sites from the highly dispersed AgBr nanoparticles on the surface of CaMoO4 microspheres. In addition, the composite catalyst AgBr/CaMoO4 displayed a good structural and cycling stability. The present study might provide a new strategy to design composite materials with excellent catalytic performance.  相似文献   

18.
Autofluorescent microcapsules were assembled by covalent cross‐linking of polysaccharide alginate dialdehyde (ADA) derivative and cystamine dihydrochloride (CM) through a layer‐by‐layer (LBL) technique. The formulated Schiff base and disulfide bonds render capsules with pH‐ and redox‐responsive properties for pinpointed intracellular delivery based on the physiological difference between intracellular and extracellular environments. This simple and versatile method could be extended to other polysaccharide derivatives for the fabrication of autofluorescent nano‐ and micromaterials with dual stimuli response for biomedical applications.  相似文献   

19.
《化学:亚洲杂志》2017,12(17):2197-2201
A novel photodynamic therapy nanoplatform based on mesoporous‐silica‐coated upconverting nanoparticles (UCNP) with electrostatic‐driven ultrafast photosensitizer (PS) loading and 808 nm near infrared (NIR)‐light‐triggering capabilities has been fabricated. By positively charging inner channels of the mesoporous silica shell with amino groups, a quantitative dosage of negatively charged PS, exemplified with Rose Bengal (RB) molecules, can be loaded in 2 min. In addition, the electrostatic‐driven technique simultaneously provides the platform with both excellent PS dispersity and leak‐proof properties due to the repulsion between the same‐charged molecules and the electrostatic attraction between different‐charged PS and silica channel walls, respectively. The as‐coated silica shell with an ultrathin thickness of 12±2 nm is delicately fabricated to facilitate ultrafast PS loading and efficient energy transfer from UCNP to PS. The outside surface of the silica shell is capped with hydrophilic β‐cyclodextrin, which not only enhances the dispersion of resulting nanoparticles in water but also plays a role of “gatekeeper”, blocking the pore opening and preventing PS leaking. The in vitro cellular lethality experiment demonstrates that RB molecules can be activated to effectively generate singlet oxygen and kill cancer cells upon 808 nm NIR light irradiation.  相似文献   

20.
We report an anionic surfactant approach for size and shape control in polyaniline, polypyrrole, and their polyaniline‐co‐polypyrrole random copolymer nanomaterials. A renewable resource azobenzenesulfonic acid anionic surfactant was developed for template‐assisted synthesis of these classes of nanomaterials. The surfactant exists as 4.3 nm micelle in water and self‐organizes with pyrrole to produce spherical aggregates. The sizes of the spherical aggregates were controlled by water dilution and subsequent oxidation of these templates, produced polypyrrole nanospheres of 0.5 μM to 50 nm dimensions. The anionic surfactant interacts differently with aniline and forms cylindrical aggregates, which exclusively produce nanofibers of ∼180 nm in diameter with length up to 3–5 μM. The template selectivity of surfactant toward aniline and pyrrole was used to tune the nanostructure of the aniline‐pyrrole random copolymers from nanofiber‐to‐nanorod‐to‐nanospheres. Dynamic light scattering technique and electron microscopes were used to study the mechanistic aspects of the template‐assisted polymerization. The four probe conductivity of the copolymers showed a nonlinear trend and the conductivity passes through minimum at 60–80% of pyrrole in the feed. The amphiphilic dopant effectively penetrates into the crystal lattices of the polymer chain and induces high solid state ordering in the homopolymer nanomaterials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 830–846, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号