首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert carrier backmixing on transfer and the influence of catalyst grain sedimentation on reaction. On the basis of this model, the influences of the size and reaction conditions of a 100000 t/a DME reactor on capacity were investigated. The optimized size of the 10000 t/a DME synthesis reactor was proposed as follows: diameter 3.2 m, height 20 m, built-in 400 tube heat exchanger (φ38×2 mm), and inert heat carrier paraffin oil 68 t and catalyst 34.46 t. Reaction temperature and pressure were important factors influencing the reaction conversion for different size reactors. Under the condition of uniform catalyst concentration distribution, higher pressure and temperature were proposed to achieve a higher production capacity of DME. The best ratio of fresh syngas for DME synthesis was 2.04.  相似文献   

2.
A titania support with a large surface area was developed, which has a BET surface area of 380.5 m2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt%vanadia. A special heat treatment was used in the calcination to maintain the large sur‐face area and high dispersion of vanadium species. This catalyst was compared to a common V2O5‐TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new cata‐lyst has a surface area of 117.7 m2/g, which was 38%higher than the traditional V2O5‐TiO2 catalyst. The selective catalytic reduction (SCR) performance demonstrated that the new catalyst had a wid‐er temperature window and better N2 selectivity compared to the traditional one. The NO conver‐sion was>80%from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V‐O‐V linkages on the catalyst prepared by the traditional method. The amount of V‐O‐Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.  相似文献   

3.
The deactivation of nickel catalysts used in Arak and Razi petrochemical complexes followed by catalyst regeneration was evalu-ated. The characterization of the different structures was made by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM),and carbon & sulfur analyzer. The Ni particle size was estimated from XRD patterns and TEM graphs. The agglomeration of nickel particle and the poison by sulfur components were recognized as the main reasons in deactivation of Arak and Razi catalysts,respectively. The activity of the used catalysts before and after regeneration was measured on methane steam reforming at a CH4:H2O ratio of 1:3 at 850 oC. The regeneration processes for Arak and Razi samples were performed with CO2 as an oxidative atmosphere and steam as a regenerating agent,respectively. The results show that,(1) no residual sulfur components were on the regenerated Razi catalyst surface without changing the structure of the catalyst and the regenerated catalyst has gained 80% of its catalytic activity,and that(2) the nickel particle size of regenerated Arak specimen decreased remarkably as measured by Debye-Scherrer equation from XRD patterns. TEM images were in agreement with the XRD results and indicated a decrease in nickel particle size of regenerated catalyst. Additionally,in both regenerated catalysts all the coke on the surface of the support was eliminated after regeneration.  相似文献   

4.
A mild,effective,and selective procedure is reported for the mono N-benzylation and N,N-dibenzylation of primary amines as well as mono N-benzylation of secondary amines using silicasupported copper(I) oxide in water.The silica-supported Cu2O was generated in situ by the reaction of Fehling solution and glucose at 100 °C onto activated silica.The catalyst was filtered,washed with water,and oven-dried,and was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,scanning electron microscopy,transmission electron microscopy,and atomic absorption spectroscopy.The prepared Cu2O-SiO2 was found to be thermally stable up to 325 °C.The copper was uniformly distributed onto the surface of the silica,and the mean particle diameter was 7 nm.The catalyst served as a selective heterogenous catalyst for the N-benzylation of primary and secondary amines.The catalyst is recyclable and was used effectively upto fifth run without a significant loss of catalytic activity.Various reaction solvents including water,acetonitrile,and toluene were screened for N-benzylation of amines,and the success of the aqueous system highlights the low environmental impact of the procedure.  相似文献   

5.
A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5wt%Na2WO4-2wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3 /FeCrAl metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing O2.The reaction performance of oxidative coupling of methane(OCM) in the dual-bed reactor system is evaluated.The effects of the reaction parameters such as feed CH 4 /O 2 ratio,reaction temperature and side tube feed O2 flowrate on the catalytic performance are investigated.The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM.CH4 conversion of 33.2%,C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained,which have been increased by 6.4%,4.1% and 5.5%,respectively,as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%,31.9% and 17.7%,respectively,as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3 /FeCrAl metal-based monolithic catalyst in a single-bed reactor.The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.  相似文献   

6.
The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively.  相似文献   

7.
A series of NixCo1-xCo2O4(0 ≤ x ≤ 1) spinel catalysts were prepared by the co-precipitation method and used for direct N2O decomposition. The decomposition pathway of the parent precipitates was characterized by thermal analysis. The catalysts were calcined at 500 °C for 3 h and characterized by powder X-ray diffraction, Fourier transform infrared, and N2 adsorption-desorption. Nickel cobaltite spinel was formed in the solid state reaction between NiO and Co3O4. The N2O decomposition measurement revealed significant increase in the activity of Co3O4 spinel oxide catalyst with the partial replacement of Co2+ by Ni2+. The activity of this series of catalysts was controlled by the degree of Co2+ substitution by Ni2+, spinel crystallite size, catalyst surface area, presence of residual K+, and calcination temperature.  相似文献   

8.
A novel mixed sol method was developed for the preparation of supported catalysts. Analyses by means of XRD and BET show that a 40%AgBiVMoO/γ-Al2O3 catalyst prepared by this method possessed high specific surface area and high dispersion of the active phase. As a result, high acrylic acid selectivity of 8.5% was obtained when the catalyst was used in the reaction of propane partial oxidation to acrylic acid in a fixed-bed reactor.  相似文献   

9.
Hematite nanoparticles have been successfully synthesized via two processing routes:(i) conventional precipitation route and (ii) reverse microemulsion route.The particle precipitation was carried out in a semibatch reactor.A microemulsion system consisting of water,chloroform,1-butanol and surfactant was loaded with iron nitrates to form iron nanoparticles precipitation.The precipitation was performed in the single-phase microemulsion operating region.Three technical surfactants,with different structure and HLB value are employed.The influence of surfactant characterization on the size of produced iron oxide particle has been studied to gain a deeper understanding of the important controlling mechanisms in the formation of nanoparticles in a microemulsion.Transmission electron microscopy (TEM),surface area,pore volume,average pore diameter,pore size distribution and XRD were used to analyze the size,size distribution,shape and structure of precipitated iron nanoparticles.  相似文献   

10.
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.  相似文献   

11.
Reduction of Pd° and decomposition of palladium oxide supported on γ-alumina were studied at atmospheric pressure under different atmospheres (H(2), CH(4), He) over a 4 wt% Pd/Al(2)O(3) catalyst (mean palladium particle size: 5 nm with 50% of small particles of size below 5 nm). During temperature programmed tests (reduction, decomposition and oxidation) the crystal domain behaviour of the PdO/Pd° phase was evaluated by in situ Raman spectroscopy and in situ XRD analysis. Under H(2)/N(2), the reduction of small PdO particles (<5 nm) occurs at room temperature, whereas reduction of larger particles (>5 nm) starts at 100 °C and is achieved at 150 °C. Subsequent oxidation in O(2)/N(2) leads to reoxidation of small crystal domain at ambient temperature while oxidation of large particles starts at 300 °C. Under CH(4)/N(2), the small particle reduction occurs between 240 and 250 °C while large particle reduction is fast and occurs between 280 and 290 °C. Subsequent reoxidation of the catalyst reduced in CH(4)/N(2) shows that small and large particle oxidation of Pd° starts also at 300 °C. Under He, no small particle decomposition is observed probably due to strong interactions between particles and support whereas large particle reduction occurs between 700 and 750 °C. After thermal decomposition under He, the oxidation starts at 300 °C. Thus, the reduction phenomenon (small and large crystal domain) depends on the nature of the reducing agent (H(2), CH(4), He). However, whatever the reduction or decomposition treatment or the crystal domain, Pd° oxidation starts at 300 °C and is completed only at temperatures higher than 550 °C. Under lean conditions, with or without water, the palladium consists of reduced sites of palladium (Pd°, Pd(δ+) with δ < 2 or PdO(x) with x < 1) randomly distributed on palladium particles.  相似文献   

12.
采用气相负载法制备了AlCl3/γ-Al2O3催化剂,考察了γ-Al2O3的粒径、温度、时间、AlCl3加入量和载气流量等制备条件对催化剂上噻吩与烯烃烷基化反应活性的影响,并采用Raman光谱、X射线衍射和N2吸附-脱附等技术对样品进行了表征,用气相色谱-质谱联用仪对反应产物进行了定性分析.结果表明,AlCl3主要通过与γ-Al2O3表面–OH结合而有效负载并均匀分布于其表面,制得的AlCl3/γ-Al2O3催化剂对噻吩和烯烃的烷基化反应具有较好的催化能力,反应产物主要是烷基噻吩.在200°C,将3g的AlCl3用100ml/min的N2向10g的γ-Al2O3(0.198~0.246mm)上负载5h,制得的AlCl3/γ-Al2O3催化剂活性最高,在液剂比为20ml/g时,噻吩脱除率可达62.11%.  相似文献   

13.
HZSM-5分子筛用于合成聚甲醛二甲基醚   总被引:3,自引:0,他引:3  
以磷酸二氢铵为前驱体,使用浸渍法制备了一系列不同磷含量改性的HZSM-5分子筛,并结合X射线衍射、N2吸附和氨程序升温脱附等表征结果探讨了催化剂硅/铝比、粒径尺寸、晶体结构、孔结构及表面酸性对其催化甲醇和三聚甲缩反应生成聚甲醛二甲基醚(PODEn)反应性能的影响,同时与商业催化剂进行了比较.结果表明,硅铝比为50,粒径尺寸为5μm,P2O5含量较低(0~6%)的HZSM-5分子筛表现出较高的催化活性和PODEn选择性.在130℃,原料甲醇和三聚甲醛的质量比为2:1的优化条件下反应时,三聚甲醛转化率可达到95.2%,PODEn(n=2~5)的选择性为62.9%,略好于商业催化剂.  相似文献   

14.
A dehydrogenation anode is reported for hydrocarbon proton conducting solid oxide fuel cells (SOFCs). A Cu-Cr(2)O(3) nanocomposite is obtained from CuCrO(2) nanoparticles as an inexpensive, efficient, carbon deposition and sintering tolerant anode catalyst. A SOFC reactor is fabricated using a Cu-Cr(2)O(3) composite as a dehydrogenation anode and a doped barium cerate as a proton conducting electrolyte. The protonic membrane SOFC reactor can selectively convert ethane to valuable ethylene, and electricity is simultaneously generated in the electrochemical oxidative dehydrogenation process. While there are no CO(2) emissions, traces of CO are present in the anode exhaust when the SOFC reactor is operated at over 700 °C. A mechanism is proposed for ethane electro-catalytic dehydrogenation over the Cu-Cr(2)O(3) catalyst. The SOFC reactor also has good stability for co-generation of electricity and ethylene at 700 °C.  相似文献   

15.
Results of an experimental study on the rate of attrition of lime catalyst/sorbent in a high-temperature, turbulent fluidized bed with quartz sand are presented. Batch measurements were conducted at 850°C in an electrically heated gasification reactor of the inner diameter of 5.1 cm with three samples of high-grade dolomitic lime of the particle size 450 ??m, 715 ??m, and 1060 ??m, respectively. In addition to the influence of the particle size, the effect of operating (elapsed) time was investigated at different superficial gas velocities. Assuming that the attrition rate decreases exponentially with time, a simple mechanistic model, enabling the correlation of the measured experimental data, was developed. The course of the lime particles attrition is described as a function of the elapsed time, excess gas velocity, and particle size. The presented approach and the results might be applicable for the attrition of high-grade dolomitic lime, particularly in fluidized gasification of biomass.  相似文献   

16.
汽车尾气中 CO, HC, NOx,硫化物及其颗粒粉尘严重危害人们身体健康和大气环境,是大气环境的主要污染源之一.目前,尾气净化是其减排的最主要方式.汽车尾气催化剂的发展经历了几代的研究,一直以来广泛采用 Pt, Pd和 Rh等贵金属,但因其资源匮乏,价格昂贵,容易被 S和 P中毒,因此人们逐渐将目光投向非贵金属催化剂的研发.钙钛矿复合氧化物因具有独特的物理化学性质以及灵活的“化学剪裁”特性而在材料研究等领域颇受青睐,有望成为贵金属催化剂的替代品.一般而言,催化剂的比表面积越大,表面活性位点越多,其催化活性越高,且会明显降低起燃温度.目前,一些制备工艺,如水热法、共沉淀法、微乳液法和硬模板法,虽可在一定程度上提高催化剂的比表面积,但却存在费时、耗能及制备工艺复杂等缺点.因此,如何简单有效地制备出大比表面积的钙钛矿型催化剂依然是一个难题.本文以合成的分级多孔δ-MnO2微球为模板,采用熔盐法制备出球状多孔 La1-xSrxMn0.8Fe0.2O3(0≤x≤0.6)钙钛矿氧化物,研究了球状多孔钙钛矿氧化物的形成过程和合适的制备温度,以及 B位 Fe3+掺杂量为20%时 A位 Sr2+掺杂量对钙钛矿催化剂结构和催化活性的影响.采用 X射线粉末衍射、扫描电子显微镜、透射电子显微镜、N2吸附-脱附、傅里叶红外光谱(FT-IR)和 X射线能谱(XPS)等方法对催化剂进行了表征.在固定床石英管反应器上评价了催化剂催化 CO氧化活性及稳定性,采用气相色谱联接氢火焰离子化检测器检测了产物和反应物的组成.结果表明,以分级多孔δ-MnO2微球为模板,采用熔盐法在450oC反应4 h制备出的球状多孔 La1-xSrxMn0.8Fe0.2O3(0≤x≤0.6)钙钛矿氧化物具有良好的结晶性、较大的比表面积(55.73 m2/g)和孔体积(0.37 cm3/g).其球状多孔结构的形成可分为两个阶段:原位形成钙钛矿相和纳片表面析出钙钛矿晶粒及钙钛矿晶粒的再生长.另外, FT-IR光谱表明, Fe3+和 Sr2+成功进入 A, B位.同时, CO转化曲线表明, B位 Fe3+的掺杂量为20%时, A位 Sr2+的掺杂量高于30%时可以明显改善催化剂催化 CO氧化活性: La1-xSrxMn0.8Fe0.2O3(0≤x≤0.3)的T50和T90分别在180和198oC左右;而 La0.55Sr0.45Mn0.8Fe0.2O3和 La0.4Sr0.6Mn0.8Fe0.2O3的T50均低于125oC; La0.55Sr0.45Mn0.8Fe0.2O3的T90为181oC,而 La0.4Sr0.6Mn0.8Fe0.2O3却仍低于125oC. XPS结果则证明,较高的催化活性得益于 La0.4Sr0.6Mn0.8Fe0.2O3表面存在较多的 Mn4+、氧空位及吸附氧.最后, La0.55Sr0.45Mn0.8Fe0.2O3和 La0.4Sr0.6Mn0.8Fe0.2O3的稳定性测试结果表明,采用熔盐法以δ-MnO2为模板在450oC焙烧4 h制备的多孔球状钙钛矿具有较好的催化稳定性.虽然催化剂制备工艺简单,周期短,但比表面积最大只有55.73 m2/g,为硬模板法的1/2,因此提高比表面积将是今后研究的方向.  相似文献   

17.
近年来,以雾霾为代表的大气污染问题严重影响到经济社会的可持续发展.其中,氮氧化物(NOx)的大量排放是导致雾霾天气的重要原因之一.氨选择性催化还原(NH3-SCR)是目前消除氮氧化物的主流技术,低温NH3-SCR更是广泛应用于钢铁、焦化、水泥、玻璃、陶瓷和垃圾焚烧等行业的烟气排放治理.传统的V2O5-WO3/Ti O2催化剂活性温度高(300–400 oC)且钒具有生物毒性,因此亟待开发环境友好的低温非钒基脱硝催化剂.最近, Ce Ti Ox基催化剂由于在中高温段(250–400 oC)表现出优异的脱硝性能而得到广泛关注.然而,该催化剂仍面临低温活性差及抗硫性能差的问题,制约了其工业化应用.研究显示,添加过渡金属可提高Ce Ti Ox基催化剂的脱硝活性和抗硫中毒性能,这主要是因为过渡金属的添加可以有效改善催化剂的氧化还原性能和表面酸性.Mo O3作为一种可以提供大量酸性位的氧化物,常被用作助剂改善钒钨钛催化剂的活性.研究显示, Mo O3的引入可以促进催化剂中钒物种的分散度以及提高表面酸性.基于此,我们制备了一系列不同Mo含量的Mo O3/Ce Ti Ox催化剂,以期提高Ce Ti Ox催化剂的低温脱硝性能及抗SO2中毒能力,并着重研究表面Mo的修饰对Ce Ti Ox催化剂物理化学性质的影响.研究发现,表面Mo修饰可以显著提高Ce Ti Ox的低温催化活性,其脱硝效率在150 oC即可达到80%,同时抗SO2中毒能力也得到增强.进一步借助X射线衍射、比表面积测定、氢气程序升温还原、氨气程序升温脱附和X射线光电子能谱等方法对催化剂进行了全面表征分析.结果显示,表面Mo修饰对Ce Ti Ox催化剂物理化学性质的影响与其脱硝性能有着密不可分的关系.首先,钼物种主要是以Mo O3的形式存在于Ce Ti Ox表面,其最佳的负载量为4wt.%.其次,表面Mo的沉积显著提高了催化剂的表面酸量,尤其是Br?nsted酸位的数量,而表面酸位的增加有利于催化剂吸附与活化反应物种NH3;同时,表面Mo修饰还减弱了硝酸盐在催化剂表面的吸附,进一步促使NH3-SCR反应按照Eley-Rideal机理顺利进行.最后,该催化剂在H2O和SO2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际含SO2的低温烟气脱硝.  相似文献   

18.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号