首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in one kind of adsorption state. Then the mechanism of interaction between the species dissociated from CH4 and CO2 during reforming was proposed.  相似文献   

2.
The effect of promoter Ce on the catalytic performance of Ni/Al2O3 catalyst for autothermal reforming of methane to hydrogen was investigated. The catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The results indicated that the catalytic performance of the catalysts was improved with the addition of Ce. Ni/Ce30Al70Oδ showed the highest CH4 conversion in operation temperatures ranging from 650 ℃ to 850 ℃. At the same time, the decrease in H2/CO ratio with increasing reaction temperature was consistent with the fact that water-gas shift reaction was thermodynamically unfavorable at higher temperatures. The XRD result indicated that adding Ce to Ni/Al2O3 catalyst prevented the formation of NiAl2O4 and facilitated the formation of NiO. The formation of NiO increased the number of active sites, resulting in higher activity. Comparing the TPR profiles of Ni/Ce30Al70Oδ with Ni/Al2O3, it could be clearly observed that with the addition of Ce, the total reduction peak areas in the middle and low temperatures increased. It was most probably that the addition of Ce inhibited the stronger interaction between Ni and Al2O3 to form the phase of NiAl2O4, and favored the formation of the strong interaction between NiO species and CeO2. Therefore, the addition of Ce to the Ni/Al2O3 catalyst increased the active surface that promoted the activity of the catalyst.  相似文献   

3.
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mo¨ssbauer spectroscopy, H2-differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed desorption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 C and syngas with H2 /CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2 , CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+ ), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C=2-C=4 ). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.  相似文献   

4.
Copper-promoted nickel-based metal nanoparticles(NPs) with high dispersion and good thermal stability were derived from layered-double hydroxides(LDHs) precursors that were facilely developed by a coprecipitation strategy.The copper-promoted Ni-based metal NPs catalysts were investigated for methane reforming with carbon dioxide to hydrogen and syngas.A series of characterization techniques including XRD,N_2 adsorption and desorption,H_2-TPR,XPS,CO_2-TPD,TEM,TGA and in situ CH_4-TPSR were utilized to determine the structure-function relationship for the obtained catalysts.The copper addition accelerated the catalyst reducibility as well as the methane activation,and made the Ni species form smaller NPs during both preparation and reaction by restricting the aggregation.However,with higher copper loading,the derived catalysts were less active during methane reforming with CO_2 to syngas.It was confirmed that the catalyst with 1 wt%Cu additive gave the higher catalytic activity and remained stable during long time reaction with excellent resistance to coking and to sintering.Furthermore,the mean size of metal NPs changed minimally from 6.6 to 7.9 nm even after 80 h of time on stream at temperature as high as700℃ for this optimized catalyst.Therefore,this high dispersed anti-coking copper-promoted nickel catalyst derived from LDHs precursor could be prospective catalyst candidate for the efficient heterogeneous catalysis of sustainable CO_2 conversion.  相似文献   

5.
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.  相似文献   

6.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters Cγ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4 and CO2 during reforming was then hypothesized.  相似文献   

7.
The reaction of zinc oxide with methane in the absence and presence of CO2 were theoretically and experimentally investigated using HSC Chemistry 5.1 software and a fixed bed reactor, respectively. In the absence of CO2 at 1193 K, the reduction of ZnO was accompanied with methane cracking, and metallic zinc, CO, and H2 were the main reaction products. This system could be utilized for the co-production of metallic zinc and synthesis gas, in which ZnO was a donor of oxygen. In the presence of CO2, ZnO plays as a catalyst in the CO2 reforming of methane and produces syngas with the average H2/CO ratio of 0.88 at 1193 K, which was close to the total reaction theoretic value of 1. It was also found that higher temperature favored high CH4 and CO2 conversions. XRD technique was used to characterize the ZnO species. The result showed that there were no differences in the peak profiles of the XRD patterns of the ZnO powder obtained before and after passing the CH4/CO2 mixed gases for 6 h at 1193 K. It is suggested that ZnO functions as a catalyst according to the redox cycle and metallic zinc plays the role of intermediate product in this process.  相似文献   

8.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters C-γ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4  相似文献   

9.
Catalytic performance of W/HZSM-5 in selective catalytic reduction of NO by acetylene was investigated in a reaction system with 1600 ppm of NO, 800 ppm of C2H2, and 9.95% of O2 in He. It was found that promotional effect of tungsten on the reaction is strongly affected by catalyst preparation conditions and Si/Al ratio of the parent zeolite. A better dispersion of tungsten on HZSM-5 and relatively more monomeric tungsten species were found on 8%W/HZSM-5 prepared by impregnation of the zeolite with lower SiO2/A1203 ratio (25) in ammonic ammonium tungstate solution and calcination of the resulting material at higher temperature (550 ℃). The highest NO conversion to N2 of 86.3% in the reaction system was obtained at 350 ℃ over the catalyst thus prepared. The mechanism of monomeric tungsten species improving the C2H2-SCR can be attributed to accelerating the formation of active nitrate species.  相似文献   

10.
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.  相似文献   

11.
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregna-tion method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic re-forming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni20/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 oC, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni20/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.  相似文献   

12.
用传统湿式浸渍法制备了La2O3掺杂的商业γ-Al2O3负载的沼气重整催化剂Ni-Co/La2O3-γ-Al2O3, 并用程序升温加氢(TPH)、程序升温氧化(TPO)、程序升温表面反应(TPSR)、程序升温脱附(TPD)及脉冲实验对催化剂进行了表征. 结果表明, 沼气重整过程中Ni-Co/La2O3-γ-Al2O3催化剂上的表面碳物种主要来源于CH4的裂解, CO2的贡献很小. CH4裂解能够产生三种活性不同的碳物种, 即Cα、Cβ与Cγ. 随着反应的进行, Cα物种减小而Cβ与Cγ物种增加, 且Cγ物种能够转变为惰性的石墨碳. 重整反应过程中CH4与CO2的活化能相互促进. 催化剂表面的O物种与C反应生成CO或与CHx反应生成CHxO再分解为CO与吸附态的H物种, 可能是Ni-Co/La2O3-γ-Al2O3催化剂上沼气重整的速率控制步骤.  相似文献   

13.
甲烷在Ni/TiO_2催化剂表面的活化   总被引:1,自引:0,他引:1  
考察了Ni/TiO2催化剂甲烷部分氧化和二氧化碳重整制合成气的反应活性,实验表明,以TiO2为载体的镍系催化剂对于甲烷部分氧化制合成气反应具有较好的活性,尤其对H2的选择性较高,对二氧化碳重整制合成气反应具有较好的低温反应活性.采用脉冲-质谱在线分析等技术,在无气相氧条件下向Ni/TiO2催化剂脉冲CH4,发现甲烷在催化剂表面的活化(转化)及其氧化产物的选择性与金属催化剂表面氧的浓度密切相关.CH4与Ni/TiO2催化剂作用过程中存在明显的氢溢流和氧溢流现象,可能是这种溢流效应使得N/TiO2催化剂具有良好的反应活性和抗积碳性能.  相似文献   

14.
Ni/ZrO2催化剂上甲烷水蒸气重整反应的研究   总被引:4,自引:2,他引:4  
研究了Ni/ZrO2催化剂对甲烷水蒸气重整制合成气的反应性能。考察了催化剂的还原温度、载体焙烧温度以及反应温度、原料配比和空速等对催化剂性能的影响。利用XRD、TEM、XPS等手段对催化剂的织构形貌进行了表征。研究表明,Ni/ZrO2催化剂用于甲烷水蒸气重整制合成气不仅具有较高的活性,也具有较好的稳定性。水蒸气比增加,CH4转化率增大、CO选择性下降。CH4转化率及CO选择性均随空速增大而下降。使用10%Ni/ZrO2催化剂,在650 ℃、空速1.984×104 h-1、原料气配比H2O∶CH4∶N2=2∶1∶2.67的条件下,获得CH4转化率85%、CO选择性70%的结果。  相似文献   

15.
Thermogravimetric analysis has been used to study carbon deposition during the CO2 reforming of methane over Ni/ZrO2 catalysts. The carbon deposits form on the reduced catalyst at a very fast rate during temperature-programmed surface reaction of reforming, and reach a steady state below 973 K. So, the amount of deposited carbon remains constant on the catalyst during the reaction at 973 K. A relationship between the amount of deposited carbon and the activity reveals that the initially formed carbon acts as a reaction intermediate and reacts with CO2 to produce CO.  相似文献   

16.
考察了焙烧温度对 Ni/MgO 催化剂结构及其在甲苯二氧化碳重整反应中催化性能的影响. 由于 NiO-MgO 固溶体的形成,样品的 X 射线衍射谱中没有出现明显的 NiO 衍射峰, 而在拉曼光谱中出现明显的散射信号. X 射线光电子能谱、氢气程序升温还原和 H2脉冲吸附结果表明, 高温焙烧过程中 Ni 向催化剂体相扩散, 与 MgO 发生强互相互作用, 使得 Ni 物种难以还原,但部分位于催化剂表面的 Ni 物种能够还原; 高温焙烧后催化剂表面活性 Ni 物种明显减少, 致使催化剂重整活性降低. 重整反应后, 催化剂表面存在少量多核芳烃类积炭, 这很可能是高温焙烧催化剂稳定性差的原因.  相似文献   

17.
甲烷在Ni/TiO2催化剂表面的活化   总被引:2,自引:0,他引:2  
考察了Ni/TiO2催化剂甲烷部分氧化和二氧化碳重整制合成气的反应活性,实验表明,以TiO2为载体的镍系催化剂对于甲烷部分氧化制合成气反应具有较好的活性,尤其对H2的选择性较高,对二氧化碳重整制合成气反应具有较好的低温反应活性.采用脉冲-质谱在线分析等技术,在无气相氧条件下向Ni/TiO2催化剂脉冲CH4,发现甲烷在催化剂表面的活化(转化)及其氧化产物的选择性与金属催化剂表面氧的浓度密切相关.CH4与Ni/TiO2催化剂作用过程中存在明显的氢溢流和氧溢流现象,可能是这种溢流效应使得Ni/TiO2催化剂具有良好的反应活性和抗积碳性能.  相似文献   

18.
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process.  相似文献   

19.
A series of Ni/SBA-15 catalysts with Ni contents from 7.5 wt% to 15 wt% were prepared by impregnation method. The effect of O2 and H2O on the combined reforming of the simulated biogas to syngas was investigated in a continuous flow fixed-bed micro-reactor. The stability of the catalyst was tested at 800 ℃. The results indicated that 10 wt%Ni/SBA-15 catalyst exhibited the highest catalytic activities for the combined reforming of the simulated biogas to syngas. Under the reaction conditions of the feed gas molar ratios CH4/CO2/O2/H2O = 2/1/0.6/0.6, GHSV = 24000 ml•g{cat}-1\cdoth-1 and the reaction temperatureT = 800 ℃, the conversions of CH4 and CO2 were 92.8% and 76.3%, respectively, and the yields of CO and H2 were 99.0% and 82.0%, respectively. The catalytic activities of the catalyst did not decrease obviously after 100 h reaction time on stream.  相似文献   

20.
整体式催化剂催化重整净化生物质粗燃气性能研究   总被引:6,自引:0,他引:6  
采用分步浸渍法制备了以Ni为活性组分的整体式催化剂,以萘为生物质焦油的模型化合物,考察了整体式催化剂催化重整生物质粗燃气的性能,通过元素分析、热重分析等方法对催化剂的表面积炭进行了研究。结果表明,在整体式催化剂作用下,108h的连续反应中,CH4的平均转化率达到92%,最高达到93.8%。合成气H2/CO的摩尔比保持0.95左右,最高达到1.15,适合液体燃料合成。CO2 的平均转化率为80%,最高达到88%。实验中添加萘模拟生物质焦油的成分,经检测焦油全部转化为H2、CO及微量轻质组分。反应连续进行108h,未发现反应器压降变化和CH4与焦油转化率的下降,表明整体式催化剂具有较好的活性和抗积炭性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号