首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition, that eliminates the need for using the Benders or Dantzig-Wolfe master problems. As input to the dual subproblem the average of a part of all known dual solutions of the primal subproblem is used, and as input to the primal subproblem the average of a part of all known primal solutions of the dual subproblem. In this paper we study the lower bounds on the optimal objective function value of (linear) pure integer programming problems obtainable by the application of mean value cross decomposition, and find that this approach can be used to get lower bounds ranging from the bound obtained by the LP-relaxation to the bound obtained by the Lagrangean dual. We examplify by applying the technique to the clustering problem and give some preliminary computational results.  相似文献   

2.
《Optimization》2012,61(5-6):495-516
For optimization problems that are structured both with respect to the constraints and with respect to the variables, it is possible to use primal–dual solution approaches, based on decomposition principles. One can construct a primal subproblem, by fixing some variables, and a dual subproblem, by relaxing some constraints and king their Lagrange multipliers, so that both these problems are much easier to solve than the original problem. We study methods based on these subproblems, that do not include the difficult Benders or Dantzig-Wolfe master problems, namely primal–dual subgradient optimization methods, mean value cross decomposition, and several comtbinations of the different techniques. In this paper, these solution approaches are applied to the well-known uncapacitated facility location problem. Computational tests show that some combination methods yield near-optimal solutions quicker than the classical dual ascent method of Erlenkotter  相似文献   

3.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

4.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

5.
We apply a recent extension of the Bregman proximal method for convex programming to LP relaxations of 0–1 problems. We allow inexact subproblem solutions obtained via dual ascent, increasing their accuracy successively to retain global convergence. Our framework is applied to relaxations of large-scale set covering problems that arise in airline crew scheduling. Approximate relaxed solutions are used to construct primal feasible solutions via a randomized heuristic. Encouraging preliminary experience is reported.  相似文献   

6.
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we consider the formulation of subproblems in which the objective function is a generalization of the Hestenes-Powell augmented Lagrangian function. The main feature of the generalized function is that it is minimized with respect to both the primal and the dual variables simultaneously. The benefits of this approach include: (i) the ability to control the quality of the dual variables during the solution of the subproblem; (ii) the availability of improved dual estimates on early termination of the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit bounds on the dual variables. We propose two primal-dual variants of conventional primal methods: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual 1 linearly constrained Lagrangian (pd 1LCL) method. Finally, a new sequential quadratic programming (pdSQP) method is proposed that uses the primal-dual augmented Lagrangian as a merit function.  相似文献   

7.
马玉敏  蔡邢菊 《计算数学》2022,44(2):272-288
增广拉格朗日方法是求解带线性约束的凸优化问题的有效算法.线性化增广拉格朗日方法通过线性化增广拉格朗日函数的二次罚项并加上一个临近正则项,使得子问题容易求解,其中正则项系数的恰当选取对算法的收敛性和收敛速度至关重要.较大的系数可保证算法收敛性,但容易导致小步长.较小的系数允许迭代步长增大,但容易导致算法不收敛.本文考虑求解带线性等式或不等式约束的凸优化问题.我们利用自适应技术设计了一类不定线性化增广拉格朗日方法,即利用当前迭代点的信息自适应选取合适的正则项系数,在保证收敛性的前提下尽量使得子问题步长选择范围更大,从而提高算法收敛速度.我们从理论上证明了算法的全局收敛性,并利用数值实验说明了算法的有效性.  相似文献   

8.
On the convergence of cross decomposition   总被引:2,自引:0,他引:2  
Cross decomposition is a recent method for mixed integer programming problems, exploiting simultaneously both the primal and the dual structure of the problem, thus combining the advantages of Dantzig—Wolfe decomposition and Benders decomposition. Finite convergence of the algorithm equipped with some simple convergence tests has been proved. Stronger convergence tests have been proposed, but not shown to yield finite convergence.In this paper cross decomposition is generalized and applied to linear programming problems, mixed integer programming problems and nonlinear programming problems (with and without linear parts). Using the stronger convergence tests finite exact convergence is shown in the first cases. Unbounded cases are discussed and also included in the convergence tests. The behaviour of the algorithm when parts of the constraint matrix are zero is also discussed. The cross decomposition procedure is generalized (by using generalized Benders decomposition) in order to enable the solution of nonlinear programming problems.  相似文献   

9.
We consider the separable nonlinear and strictly convex single-commodity network flow problem (SSCNFP). We develop a computational scheme for generating a primal feasible solution from any Lagrangian dual vector; this is referred to as “early primal recovery”. It is motivated by the desire to obtain a primal feasible vector before convergence of a Lagrangian scheme; such a vector is not available from a Lagrangian dual vector unless it is optimal. The scheme is constructed such that if we apply it from a sequence of Lagrangian dual vectors that converge to an optimal one, then the resulting primal (feasible) vectors converge to the unique optimal primal flow vector. It is therefore also a convergent Lagrangian heuristic, akin to those primarily devised within the field of combinatorial optimization but with the contrasting and striking advantage that it is guaranteed to yield a primal optimal solution in the limit. Thereby we also gain access to a new stopping criterion for any Lagrangian dual algorithm for the problem, which is of interest in particular if the SSCNFP arises as a subproblem in a more complex model. We construct instances of convergent Lagrangian heuristics that are based on graph searches within the residual graph, and therefore are efficiently implementable; in particular we consider two shortest path based heuristics that are based on the optimality conditions of the original problem. Numerical experiments report on the relative efficiency and accuracy of the various schemes.  相似文献   

10.
In recent years we have witnessed remarkable progress in the development of the topological design of computer communication networks. One of the important aspects of the topological design of computer communication networks is the concentrator location problem. This problem is a complex combinatorial problem that belongs to the difficult class of NP-complete problems where the computation of an optimal solution is still a challenging task. This paper extends the standard capacitated concentrator location problem to a generalization of multitype capacitated concentrator location problems and presents an efficient algorithm based on cross decomposition. This algorithm incorporates the Benders decomposition and Lagrangean relaxation methods into a single framework and exploits the resulting primal and dual structure simultaneously. Computational results are quite satisfactory and encouraging and show this algorithm to be both efficient and effective. The use of cross decomposition as a heuristic algorithm is also discussed.  相似文献   

11.
We study subgradient methods for computing the saddle points of a convex-concave function. Our motivation comes from networking applications where dual and primal-dual subgradient methods have attracted much attention in the design of decentralized network protocols. We first present a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rate estimates on the constructed solutions. We then focus on Lagrangian duality, where we consider a convex primal optimization problem and its Lagrangian dual problem, and generate approximate primal-dual optimal solutions as approximate saddle points of the Lagrangian function. We present a variation of our subgradient method under the Slater constraint qualification and provide stronger estimates on the convergence rate of the generated primal sequences. In particular, we provide bounds on the amount of feasibility violation and on the primal objective function values at the approximate solutions. Our algorithm is particularly well-suited for problems where the subgradient of the dual function cannot be evaluated easily (equivalently, the minimum of the Lagrangian function at a dual solution cannot be computed efficiently), thus impeding the use of dual subgradient methods.  相似文献   

12.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

13.
In this paper we apply stochastic dual dynamic programming decomposition to a nonconvex multistage stochastic hydrothermal model where the nonlinear water head effects on production and the nonlinear dependence between the reservoir head and the reservoir volume are modeled. The nonconvex constraints that represent the production function of a hydro plant are approximated by McCormick envelopes. These constraints are split into smaller regions and the McCormick envelopes are used for each region. We use binary variables for this disjunctive programming approach and solve the problem with a decomposition method. We resort to a variant of the L-shaped method for solving the MIP subproblem with binary variables at any stage inside the stochastic dual dynamic programming algorithm. A realistic large-scale case study is presented.  相似文献   

14.
In the present paper, we propose a novel convergence analysis of the alternating direction method of multipliers, based on its equivalence with the overrelaxed primal–dual hybrid gradient algorithm. We consider the smooth case, where the objective function can be decomposed into one differentiable with Lipschitz continuous gradient part and one strongly convex part. Under these hypotheses, a convergence proof with an optimal parameter choice is given for the primal–dual method, which leads to convergence results for the alternating direction method of multipliers. An accelerated variant of the latter, based on a parameter relaxation, is also proposed, which is shown to converge linearly with same asymptotic rate as the primal–dual algorithm.  相似文献   

15.
Algorithms for convex programming, based on penalty methods, can be designed to have good primal convergence properties even without uniqueness of optimal solutions. Taking primal convergence for granted, in this paper we investigate the asymptotic behavior of an appropriate dual sequence obtained directly from primal iterates. First, under mild hypotheses, which include the standard Slater condition but neither strict complementarity nor second-order conditions, we show that this dual sequence is bounded and also, each cluster point belongs to the set of Karush–Kuhn–Tucker multipliers. Then we identify a general condition on the behavior of the generated primal objective values that ensures the full convergence of the dual sequence to a specific multiplier. This dual limit depends only on the particular penalty scheme used by the algorithm. Finally, we apply this approach to prove the first general dual convergence result of this kind for penalty-proximal algorithms in a nonlinear setting.  相似文献   

16.
In a multiperiod dynamic network flow problem, we model uncertain arc capacities using scenario aggregation. This model is so large that it may be difficult to obtain optimal integer or even continuous solutions. We develop a Lagrangian decomposition method based on the structure recently introduced in G.D. Glockner and G.L. Nemhauser, Operations Research, vol. 48, pp. 233–242, 2000. Our algorithm produces a near-optimal primal integral solution and an optimum solution to the Lagrangian dual. The dual is initialized using marginal values from a primal heuristic. Then, primal and dual solutions are improved in alternation. The algorithm greatly reduces computation time and memory use for real-world instances derived from an air traffic control model.  相似文献   

17.
The Revised Primal Simplex algorithm, in its simplest form, has no defence against degeneracy. Various forms of the perturbation method are usually effective, but most offer no guarantee of avoiding all degeneracy, and can lead to numerical difficulties. This paper presents a method that avoids cycling and circling by taking a dual approach.The degenerate subproblem consists of all the original variables, but only the degenerate transformed constraints. The current primal objective, which may be mixed, is used. This subproblem may be solved using the dual simplex algorithm, starting from the current dual infeasible solution, and with a zero dual objective. If the dual algorithm terminates optimally then the whole problem is optimal (subject to primal feasibility). Otherwise the final solution provides a non-basic direction which improves the value of the mixed primal objective and moves away from the degenerate vertex. A purification algorithm then renders the solution basic and further improves the mixed objective.  相似文献   

18.
In Wireless Mesh Networks (WMN), the optimal routing of data depends on the link capacities which are determined by link scheduling. The optimal performance of the network, therefore, can only be achieved by joint routing and scheduling optimization. Although the joint single-path routing and scheduling optimization problem has been extensively studied, its multi-path counterpart within wireless mesh networks has not yet been fully investigated. In this paper, we present an optimization architecture for joint multi-path QoS routing and the underlying wireless link scheduling in wireless mesh networks. By employing the contention matrix to represent the wireless link interference, we formulate a utility maximization problem for the joint multi-path routing and MAC scheduling and resolve it using the primal–dual method. Since the multi-path routing usually results in the non-strict concavity of the primal objective function, we first introduce the Proximal Optimization Algorithm to get around such difficulty. We then propose an algorithm to solve the routing subproblem and the scheduling subproblem via the dual decomposition. Simulations demonstrate the efficiency and correctness of our algorithm.  相似文献   

19.
Lagrangean dualization and subgradient optimization techniques are frequently used within the field of computational optimization for finding approximate solutions to large, structured optimization problems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an abundance of techniques for computing such solutions (via penalty functions, tangential approximation schemes, or the solution of auxiliary primal programs), all of which require a fair amount of computational effort. We consider a subgradient optimization scheme applied to a Lagrangean dual formulation of a convex program, and construct, at minor cost, an ergodic sequence of subproblem solutions which converges to the primal solution set. Numerical experiments performed on a traffic equilibrium assignment problem under road pricing show that the computation of the ergodic sequence results in a considerable improvement in the quality of the primal solutions obtained, compared to those generated in the basic subgradient scheme. Received February 11, 1997 / Revised version received June 19, 1998?Published online June 28, 1999  相似文献   

20.
When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each iteration of the method is rewritten as a quadratic minimization subject to linear equality constraints. This allows the exploitation of duality properties of the associated linearized problems. This paper considers a recent conjugate-gradient-like method which performs the quadratic minimization in the dual space and produces, in exact arithmetic, the same iterates as those produced by a standard conjugate-gradients method in the primal space. This dual algorithm is computationally interesting whenever the dimension of the dual space is significantly smaller than that of the primal space, yielding gains in terms of both memory usage and computational cost. The relation between this dual space solver and PSAS (Physical-space Statistical Analysis System), another well-known dual space technique used in data assimilation problems, is explained. The use of an effective preconditioning technique is proposed and refined convergence bounds derived, which results in a practical solution method. Finally, stopping rules adequate for a trust-region solver are proposed in the dual space, providing iterates that are equivalent to those obtained with a Steihaug-Toint truncated conjugate-gradient method in the primal space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号