首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thenonlinearcomplementarityproblem,denotedbyNCP(F):findavectorx∈RnsuchthatF(X)2≥0,X≥0,XTF(X)=0,whereF:Rn→Rnisagivenfunction.DuringthelastfewyearsjmanymethodshavebeendevelopedforthesolutionofNCP(F),see[3]andreferencestherein.Andalgorithmswithglobalandlocallysuperlinearconvergencehavebeenpresented.However,mostpapersarebasedonsufficielltlysmooth(atleastdifferelltiable)functionsF.Incontrasttothis,wewishtoobtaincorrespondingresultsfornonsmoothfunctionF.Tothisend,Fishe.[2]presentedader…  相似文献   

2.
In this paper, we propose a globally convergent Polak-Ribiere-Polyak (PRP) conjugate gradient method for nonconvex minimization of differentiable functions by employing an Armijo-type line search which is simpler and less demanding than those defined in [4,10]. A favorite property of this method is that we can choose the initial stepsize as the one-dimensional minimizer of a quadratic modelΦ(t):= f(xk) tgkTdk (1/2) t2dkTQkdk, where Qk is a positive definite matrix that carries some second order information of the objective function f. So, this line search may make the stepsize tk more easily accepted. Preliminary numerical results show that this method is efficient.  相似文献   

3.
The regularized Newton method (RNM) is one of the efficient solution methods for the unconstrained convex optimization. It is well-known that the RNM has good convergence properties as compared to the steepest descent method and the pure Newton’s method. For example, Li, Fukushima, Qi and Yamashita showed that the RNM has a quadratic rate of convergence under the local error bound condition. Recently, Polyak showed that the global complexity bound of the RNM, which is the first iteration k such that ‖ f(x k )‖≤ε, is O(ε −4), where f is the objective function and ε is a given positive constant. In this paper, we consider a RNM extended to the unconstrained “nonconvex” optimization. We show that the extended RNM (E-RNM) has the following properties. (a) The E-RNM has a global convergence property under appropriate conditions. (b) The global complexity bound of the E-RNM is O(ε −2) if 2 f is Lipschitz continuous on a certain compact set. (c) The E-RNM has a superlinear rate of convergence under the local error bound condition.  相似文献   

4.
Journal of Optimization Theory and Applications - A class of non-smooth and non-convex optimization problems with penalty constraints linked to variational inequalities is studied with respect to...  相似文献   

5.
The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.  相似文献   

6.
We study convergence properties of Dikins affine scaling algorithm applied to nonconvex quadratic minimization. First, we show that the objective function value either diverges or converges Q-linearly to a limit. Using this result, we show that, in the case of box constraints, the iterates converge to a unique point satisfying first-order and weak second-order optimality conditions, assuming the objective function Hessian Q is rank dominant with respect to the principal submatrices that are maximally positive semidefinite. Such Q include matrices that are positive semidefinite or negative semidefinite or nondegenerate or have negative diagonals. Preliminary numerical experience is reported.  相似文献   

7.
In this paper, we suggest and analyze an implicit iterative method for solving nonconvex variational inequalities using the technique of the projection operator. We also discuss the convergence of the iterative method under suitable weaker conditions. Our method of proof is very simple as compared with other techniques.  相似文献   

8.
Consider the following nonlinear programming problem:where f, gi's are sufficiently smooth functions in R~n. LetIt is well known that if x~*∈Ω is a solution of (1) then there exists λ~*=(λ_I~*,…,λ_m~*)∈R~m such that(x~*,λ~*) is a solution of the K-K-T system  相似文献   

9.
An Interior Point Path—following Method for Nonconvex Programmin …   总被引:1,自引:0,他引:1  
刘庆怀  于波 《数学进展》2000,29(4):381-382
  相似文献   

10.
This paper aims at showing that the class of augmented Lagrangian functions, introduced by Rockafellar and Wets, can be derived, as a particular case, from a nonlinear separation scheme in the image space associated with the given problem; hence, it is part of a more general theory. By means of the image space analysis, local and global saddle-point conditions for the augmented Lagrangian function are investigated. It is shown that the existence of a saddle point is equivalent to a nonlinear separation of two suitable subsets of the image space. Under second-order sufficiency conditions in the image space, it is proved that the augmented Lagrangian admits a local saddle point. The existence of a global saddle point is then obtained under additional assumptions that do not require the compactness of the feasible set.  相似文献   

11.
We consider the problem of minimizing the weighted sum of a smooth function f and a convex function P of n real variables subject to m linear equality constraints. We propose a block-coordinate gradient descent method for solving this problem, with the coordinate block chosen by a Gauss-Southwell-q rule based on sufficient predicted descent. We establish global convergence to first-order stationarity for this method and, under a local error bound assumption, linear rate of convergence. If f is convex with Lipschitz continuous gradient, then the method terminates in O(n 2/ε) iterations with an ε-optimal solution. If P is separable, then the Gauss-Southwell-q rule is implementable in O(n) operations when m=1 and in O(n 2) operations when m>1. In the special case of support vector machines training, for which f is convex quadratic, P is separable, and m=1, this complexity bound is comparable to the best known bound for decomposition methods. If f is convex, then, by gradually reducing the weight on P to zero, the method can be adapted to solve the bilevel problem of minimizing P over the set of minima of f+δ X , where X denotes the closure of the feasible set. This has application in the least 1-norm solution of maximum-likelihood estimation. This research was supported by the National Science Foundation, Grant No. DMS-0511283.  相似文献   

12.
1.IntroductionWeconsidertheunconstrainedoptimizationproblem:minj(x).(1.1)acRewheref:R"-- Riscontinuouslydifferelltiable.PerryandShanno'smemorylesssquasiNewtonmethodisoftenusedtosolvetheproblem(1.1)whennislarge.ItwasoriginatedfromtheworksofPerry(1977[l])an…  相似文献   

13.
A new approach is proposed for finding all real solutions of systems of nonlinear equations with bound constraints. The zero finding problem is converted to a global optimization problem whose global minima with zero objective value, if any, correspond to all solutions of the original problem. A branch-and-bound algorithm is used with McCormick’s nonsmooth convex relaxations to generate lower bounds. An inclusion relation between the solution set of the relaxed problem and that of the original nonconvex problem is established which motivates a method to generate automatically, starting points for a local Newton-type method. A damped-Newton method with natural level functions employing the restrictive monotonicity test is employed to find solutions robustly and rapidly. Due to the special structure of the objective function, the solution of the convex lower bounding problem yields a nonsmooth root exclusion test which is found to perform better than earlier interval-analysis based exclusion tests. Both the componentwise Krawczyk operator and interval-Newton operator with Gauss-Seidel based root inclusion and exclusion tests are also embedded in the proposed algorithm to refine the variable bounds for efficient fathoming of the search space. The performance of the algorithm on a variety of test problems from the literature is presented, and for most of them, the first solution is found at the first iteration of the algorithm due to the good starting point generation.  相似文献   

14.
This article describes a bounding approximation scheme for convex multistage stochastic programs (MSP) that constrain the conditional expectation of some decision-dependent random variables. Expected value constraints of this type are useful for modelling a decision maker’s risk preferences, but they may also arise as artifacts of stage-aggregation. We develop two finite-dimensional approximate problems that provide bounds on the (infinite-dimensional) original problem, and we show that the gap between the bounds can be made smaller than any prescribed tolerance. Moreover, the solutions of the approximate MSPs give rise to a feasible policy for the original MSP, and this policy’s optimality gap is shown to be smaller than the difference of the bounds. The considered problem class comprises models with integrated chance constraints and conditional value-at-risk constraints. No relatively complete recourse is assumed.  相似文献   

15.
This paper addresses the issues involved with an interior point-based decomposition applied to the solution of linear programs with a block-angular structure. Unlike classical decomposition schemes that use the simplex method to solve subproblems, the approach presented in this paper employs a primal-dual infeasible interior point method. The above-mentioned algorithm offers a perfect measure of the distance to optimality, which is exploited to terminate the algorithm earlier (with a rather loose optimality tolerance) and to generate -subgradients. In the decomposition scheme, subproblems are sequentially solved for varying objective functions. It is essential to be able to exploit the optimal solution of the previous problem when solving a subsequent one (with a modified objective). A warm start routine is described that deals with this problem. The proposed approach has been implemented within the context of two optimization codes freely available for research use: the Analytic Center Cutting Plane Method (ACCPM)—interior point based decomposition algorithm and the Higher Order Primal-Dual Method (HOPDM)—general purpose interior point LP solver. Computational results are given to illustrate the potential advantages of the approach applied to the solution of very large structured linear programs.  相似文献   

16.
This paper investigates a pseudotransient continuation algorithm for solving a system of nonsmooth equations with inequality constraints. We first transform the inequality constrained system of nonlinear equations to an augmented nonsmooth system, and then employ the pseudotransient continuation algorithm for solving the corresponding augmented nonsmooth system. The method gets its global convergence properties from the dynamics, and inherits its local convergence properties from the semismooth Newton method. Finally, we illustrate the behavior of our approach by some numerical experiments.  相似文献   

17.
18.

A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.

  相似文献   

19.
We investigate some properties related to the generalized Newton method for the Fischer-Burmeister (FB) function over second-order cones, which allows us to reformulate the second-order cone complementarity problem (SOCCP) as a semismooth system of equations. Specifically, we characterize the B-subdifferential of the FB function at a general point and study the condition for every element of the B-subdifferential at a solution being nonsingular. In addition, for the induced FB merit function, we establish its coerciveness and provide a weaker condition than Chen and Tseng (Math. Program. 104:293–327, 2005) for each stationary point to be a solution, under suitable Cartesian P-properties of the involved mapping. By this, a damped Gauss-Newton method is proposed, and the global and superlinear convergence results are obtained. Numerical results are reported for the second-order cone programs from the DIMACS library, which verify the good theoretical properties of the method. S. Pan’s work is partially supported by the Doctoral Starting-up Foundation (B13B6050640) of GuangDong Province. J.-S. Chen is member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. J.-S. Chen’s work is partially supported by National Science Council of Taiwan.  相似文献   

20.
In this paper, we study a class of vector minimization problems on a complete metric space X which is identified with the corresponding complete metric space of objective functions . We do not impose any compactness assumption on X. We show that, for most (in the sense of Baire category) functions , the corresponding vector optimization problem has a solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号