首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measuring molecular weight by atomic force microscopy   总被引:2,自引:0,他引:2  
Absolute-molecular-weight distribution of cylindrical brush molecules were determined using a combination of the Langmuir Blodget (LB) technique and Atomic Force Microscopy (AFM). The LB technique gives mass density of a monolayer, i.e., mass per unit area, whereas visualization of individual molecules by AFM enables accurate measurements of the molecular density, i.e., number of molecules per unit area. From the ratio of the mass density to the molecular density, one can determine the absolute value for the number average molecular weight. Assuming that the structure of brush molecules is uniform along the backbone, the length distribution should be virtually identical to the molecular weight distribution. Although we used only brush molecules for demonstration purpose, this approach can be applied for a large variety of molecular and colloidal species that can be visualized by a microscopic technique.  相似文献   

2.
Tapping-mode atomic force microscopy was used to study the time-dependent changes in the structure of fibrinogen under aqueous conditions following adsorption on two model surfaces: hydrophobic graphite and hydrophilic mica. Fibrinogen was observed in the characteristic trinodular form, and the dimensions of the adsorbed molecules were consistent with previously reported values for these surfaces. On the basis of the differences in the relative heights of the D and the E domains, four orientation states were observed for fibrinogen adsorbed on both the surfaces. On graphite, the initial asymmetric orientation states disappeared with spreading over time. Some small lateral movements of the adsorbed proteins were observed on mica during repeated scanning, whereas no such movement was observed on graphite, indicating strong adhesion of fibrinogen to a hydrophobic surface. Spreading kinetics of fibrinogen on the two surfaces was determined by measuring the heights of the D and E domains over a time period of approximately 2 h. On graphite, the heights of both the D and E domains decreased with time to a lower plateau value of 1.0 nm. On mica, the heights of both the D and E domains showed an increase, rising to an upper plateau value of approximately 2.1 nm. The spreading of the D and E domains on graphite was analyzed using an 'exponential-decay-of-height' model. A spreading rate constant of approximately 4.7 x 10(-4) s(-1) was observed for the whole fibrinogen molecule adsorbed on graphite, corresponding to a free energy of unfolding of approximately 37 kT. Extrapolation of the exponential curve in the model to t = 0 yielded values of 2.3 and 2.2 nm for the heights of the D and the E domains at the time of contact with the hydrophobic graphite substrate, significantly less than their free solution diameters. A two-step spreading model is proposed to explain this observation.  相似文献   

3.
The dependence of the local Young's modulus of organic thin films on the size of the domains at the nanometer scale is systematically investigated. Using atomic force microscopy (AFM) based imaging and lithography, nanostructures with designed size, shape, and functionality are preengineered, e.g., nanostructures of octadecanethiols inlaid in decanethiol self-assembled monolayers (SAMs). These nanostructures are characterized using AFM, followed by force modulation spectroscopy and microscopy measurements. Young's modulus is then extracted from these measurements using a continuum mechanics model. The apparent Young's modulus is found to decrease nonlinearly with the decreasing size of these nanostructures. This systematic study presents conclusive evidence of the size dependence of elasticity in the nanoregime. The approach utilized may be applied to study the size-dependent behavior of various materials and other mechanical properties.  相似文献   

4.
5.
An undecanol film adsorbed on a mica surface was found to rearrange and spread in a position-controlled way induced by a tapping mode atomic force microscopy (AFM) probe. AFM images of varying scanning times showed that before forming an ordered monolayer the undecanol molecules were adsorbed on the mica surface in the disordered and disorganized status. With the proceeding of scanning, these undecanol molecules gradually formed an ordered and flat film. Such behavior was caused by the formation of a stable film and had never been reported for other alcohols.  相似文献   

6.
In the last few years, an array of novel technologies, especially the big family of scanning probe microscopy, now often integrated with other powerful imaging tools such as laser confocal microscopy and total internal reflection fluorescence microscopy, have been widely applied in the investigation of biomolecular interactions and dynamics. But it is still a great challenge to directly monitor the dynamics of biomolecular interactions with high spatial and temporal resolution in living cells. An innovative method termed “single-photon atomic force microscopy” (SP-AFM), superior to existing techniques in tracing biomolecular interactions and dynamics in vivo, was proposed on the basis of the combination of atomic force microscopy with the technologies of carbon nanotubes and single-photon detection. As a unique tool, SP-AFM, capable of simultaneous topography imaging and molecular identification at the subnanometer level by synchronous acquisitions and analyses of the surface topography and fluorescent optical signals while scanning the sample, could play a very important role in exploring biomolecular interactions and dynamics in living cells or in a complicated biomolecular background.  相似文献   

7.
Under ambient conditions, a water meniscus generally forms between a nanoscale atomic force microscope tip and a hydrophilic surface. Using a lattice gas model for water and thermodynamic integration methods, we calculate the capillary force due to the water meniscus for both hydrophobic and hydrophilic tips at various humidities. As humidity rises, the pull-off force rapidly reaches a plateau value for a hydrophobic tip but monotonically increases for a weakly hydrophilic tip. For a strongly hydrophilic tip, the force increases at low humidities (<30%) and then decreases. We show that mean-field density functional theory reproduces the simulated pull-off force very well.  相似文献   

8.
AFM/KPM charging and charge mapping of polyamine charge carriers in a PMMA matrix is reported. Selective charging of the designed charge carrier is demonstrated at concentrations down to a single molecule. This works constitutes electrochemical charging and detection of single redox-active organic molecules in low dielectric matrices by probe microscopy.  相似文献   

9.
Nanometer-sized clusters of copper have been produced in a hollow cathode sputtering source and deposited on SiOx. Halo-like structures consisting of micrometer sized protrusions in the silicon oxide surface surrounded by thin rings of smaller particles are observed. The area in between seems to be depleted of particles. We propose that the halo-like structures are a result of electrostatic forces acting between the incoming charged clusters and charged regions on the surface. A simple computer simulation supports this suggestion.  相似文献   

10.
The bulk mechanical properties of a blend of elastomers are found to depend on the micro and nano scale morphology of the phases of the materials in the blend. In this study, we examine the phase morphology of blends of incompatible elastomers using Atomic Force Microscopy (AFM). Specifically, nanoindentation and Tapping Mode AFM (TMAFM) imaging techniques are used as experimental tools for mapping the composition of unfilled elastomeric blends. Depending on the composition of the blend, either co‐continuous or discontinuous domain/matrix morphology is observed. To identify the different components in bromobutyl (BIIR)/natural rubber (NR) blends, nanoscale indentation measurements were made on the observed phase‐separated regions. Results from force mode AFM and mechanical measurements of bulk NR and BIIR are used to assist in the interpretation of the TMAFM results for the BIIR/NR blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 492–503, 2006  相似文献   

11.
Direct measurements of the pull-off (adhesion) forces between pharmaceutical particles (beclomethasone dipropionate, a peptide-type material, and lactose) with irregular geometry and rough polymeric surfaces (series of polypropylene coatings, polycarbonate, and acrylonitrile-butadiene-styrene) were carried out using the atomic force microscope. These measurements showed that roughness of the interacting surfaces is the significant factor affecting experimentally measured pull-off forces. A broad distribution of pull-off force values was noted in the measurements, caused by a varying adhesive contact area for a particle located on rough substrate. The possibility of multiple points of contact between irregularly shaped pharmaceutical particles and substrate surfaces is demonstrated with nanoindentations of the particle in a fluoro-polymer film. Force-distance curves showing the "sawtooth" pattern are additional evidence that particles make contact with substrates at more than one point. Reduced adhesion of 10- to 14-microm-diameter lactose and peptide material particles to the polypropylene coatings with a roughness of 194 nm was found in this study. Similar pull-off force versus roughness relationships are also reported for the model spherical particles, silanized glass particle with a size of 10 microm and polystyrene particle with a diameter of 9 microm, in contact with polypropylene coatings of varying roughness characteristics. It was found that the model recently proposed by Rabinovich et al. (J. Colloid Interface Sci. 232, 1-16 (2000)) closely predicts the pull-off forces for glass and lactose particles. On the other hand, the adhesion of the peptide material and polystyrene particle to polypropylene is underestimated by about an order of magnitude with the theoretical model, in which the interacting substrates are treated as rigid materials. The underestimate is attributed to the deformation of the peptide material and polystyrene particles.  相似文献   

12.
Investigation of aerosol particles by atomic force microscopy   总被引:1,自引:0,他引:1  
AFM has been applied for studying morphology and size distribution of nanometer-sized particles adsorbed on flat surfaces. In order to optimize imaging of these ultrafine particles different substrates were evaluated with respect to their roughness and stability under the influence of the sensing tip. Moreover, a method for calculating particle volumes from the three-dimensional AFM data is described. This greatly enhances the information content of AFM images, because a large number of particles in the raw data can be evaluated automatically in order to derive information on size distribution or surface coverage. This evaluation method has also been applied successfully to quantitatively describe changes on particles induced by different humidity of the surrounding atmosphere. Received: 15 July 1996 / Revised: 18 December 1996 / Accepted: 3 January 1997  相似文献   

13.
The surface mobility of colloidal latex particles adsorbed on mica was measured by moving the particles with an AFM tip in the lateral force microscopy mode. The same particle was repeatedly scanned while the normal force was gradually increased, until the particle was displaced from its location on the substrate. The lateral (friction) force curve obtained for that scan was then used to determine the force needed to displace the particle. The data accumulated for approximately 100 particles indicate a wide distribution in the lateral force required. However, the data show that the mean lateral force is proportional to the particle diameter, with the effect of electrostatic interactions on the mobility of adsorbed particles seen to be weak. These results are consistent with classical theories of friction in macroscopic systems.  相似文献   

14.
Mechanical properties of layers of intact liposomes attached by specific interactions on solid surfaces were studied by atomic force microscopy (AFM) force measurements. Force-distance measurements using colloidal probe tips were obtained over liposome layers and used to calculate Young's moduli by using the Hertz contact theory. A classical Hertz model and a modified Hertz one have been used to extract Young's moduli from AFM force curves. The modified model, proposed by Dimitriadis, is correcting for the finite sample thickness since Hertz's classical model is assuming that the sample is infinitely thick. Values for Young's moduli of 40 and 8 kPa have been obtained using the Hertz model for one and three layers of intact liposomes, respectively. Young's moduli of approximately 3 kPa have been obtained using the corrected Hertz model for both one and three layers of surface-bound liposomes. Compression work performed by the colloidal probe to compress these liposome layers has also been calculated.  相似文献   

15.
Since its invention twenty years ago the atomic force microscope (AFM) has become one of the most important instruments in colloid and interface science. The ability of tracing force profiles between single particles or particles and flats in liquid environment makes it a tool-of-choice for investigating thin liquid films. In this paper we review experimental work on confined Newtonian and non-Newtonian liquids using the AFM.  相似文献   

16.
Using an atomic force microscope (AFM) the interaction between an AFM tip and different planar solid surfaces have been measured across a long-chain poly(dimethyl siloxane) (PDMS, MW = 18,000 g/mol), a short-chain PDMS (MW = 4200 g/mol), a poly(ethylmethyl siloxane) (PEMS, MW = 16,800 g/mol), and a diblock copolymer consisting of one PDMS and one PEMS block (PDMS-b-PEMS, MW = 15,100 g/mol). The interaction changed significantly during the first 10 h after immersing the solids in the polymer melt. This demonstrates that the time scale of structural changes at a solid surface is much slower than in the bulk. On mica and silicon oxide both polymers formed an immobilized “pinned” layer beyond which a monotonically decaying repulsive force was observed. Attractive forces were observed with short-chain PDMS on silicon oxide and PEMS on mica and silicon oxide. On the basal plane of graphite PEMS caused a stable, exponentially decaying oscillatory force.  相似文献   

17.
Atomic force microscopy has been used to image the various facets of two morphologically distinct samples of silicalite. The smaller (20 microm) sample A crystals show 1 nm high radial growth terraces. The larger (240 microm) sample B crystals show growth terraces 1 to 2 orders of magnitude higher than the terraces on sample A with growth edges parallel to the crystallographic axes. Moreover, the terraces on the (010) face are significantly higher than the terraces on the (100) face - inconsistent with the previously proposed 90 degrees intergrowth structure. Sample A highlights that under certain synthetic conditions, silicalite grows in a manner akin to zeolites Y and A, via the deposition of layers comprising, in the case of silicalite, pentasil chains. It is probable that the rate of terrace advance is identical on the (010) and (100) faces, and it is the rate of terrace nucleation that dictates the overall growth rate of each facet and hence the relative size expressed in the final crystal morphology. Analysis of the growth terraces of sample B and detailed consideration of the structures of both MFI, and a closely related material MEL, lead to the proposal of a generalized growth mechanism for silicalite including the incorporation of defects within the structure. These defects are thought to be responsible for both the relative and the absolute terrace heights observed and may also explain the hourglass phenomenon observed by optical microscopy. The implications of this growth mechanism, supported by results of infrared microscopy, generate a new dimension to the continuing debate on the existence of intergrowths within one of the most important structures relevant to zeolite catalysis.  相似文献   

18.
Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, ‘bee-structures’ with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the ‘bee-structures’, which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the ‘bee-structures’. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of ‘bee-structures’ in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition, critical technical challenges associated with AFM characterization of bitumen surface structures are discussed, with possible solutions recommended. For future work, combining AFM with other chemical analysis tools that can generate comparable high resolution to AFM would provide an avenue to linking bitumen's chemistry to its microscopic morphological and mechanical properties and consequently benefit the efforts of developing structure-related models for bituminous materials across the different length scales.  相似文献   

19.
Atomic force microscopy (AFM) was employed to probe the mechanical properties of surface-charged polystyrene microspheres with 1-12 mol% of vinylbenzyl(trimethyl)ammonium chloride (VBTA) units. On the basis of Hertz's theory of contact mechanics, compressive moduli between 1 and 2 GPa were measured by the analysis of force-displacement curves captured on the particles via the force-volume technique. The deformation of the top of the polystyrene particles by the AFM tip was used to calculate the surface modulus. The compressive moduli are slightly less than the moduli of polystyrene bulk materials. The modulus of the polystyrene microspheres increases with an increase of the VBTA content.  相似文献   

20.
The organization of bacteriorhodopsin (bR) within reconstituted purple membranes (RPM) was examined using atomic force microscopy (AFM). Five reconstituted species were examined: RPM 3 (bR/native polar lipids/dimyristoylphosphatidylcholine (DMPC) in a 1:9:14 molar ratio), RPM 4 (bR/native polar lipids in a 1:7 molar ratio), RPM 5 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycerol in a 1:3.5:6.1 molar ratio), RPM 6 (bR/native polar lipids/1,2-di-O-phytanyl-sn-glycero-3-phosphocholine in a 1:3.5:4.9 molar ratio), and RPM 7 (bR/native polar lipids/1,2-diphytanoyl-sn-glycero-3-[phospho-l-serine] in a 1:3.5:4.6 molar ratio). RPM 3 patches adsorbed onto mica exhibit domains of crystallized bR trimers arranged in a hexagonal packing structure, similar to those found in native purple membrane (NPM). These domains are enclosed by DMPC-rich regions. RPM 4 patches were observed to have larger domains of crystallized bR, with trimer orientation 30° different from that found in NPM. The bR-rich domains are enclosed by a large, protein-free, lipid-rich region. The topography of RPM 5 was difficult to resolve as the surface had no discernable patterns or structure. The topographies of RPM 6 and 7 were similar to that found in RPM 3 in that higher domains were formed within the patch adsorbed onto mica. They may contain protein-rich regions, but clear images of protein arrangement could not be obtained using AFM. This may be a result of imaging limitations or of the lack of organization of bR within these domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号