首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We prove that any triangulation of a surface different from the sphere and the projective plane admits an orientation without sinks such that every vertex has outdegree divisible by three. This confirms a conjecture of Barát and Thomassen and is a step toward a generalization of Schnyder woods to higher genus surfaces.  相似文献   

2.
    
We prove that a 171‐edge‐connected graph has an edge‐decomposition into paths of length 3 if and only its size is divisible by 3. It is a long‐standing problem whether 2‐edge‐connectedness is sufficient for planar triangle‐free graphs, and whether 3‐edge‐connectedness suffices for graphs in general. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 286–292, 2008  相似文献   

3.
    
For a graph G and a tree‐decomposition of G, the chromatic number of is the maximum of , taken over all bags . The tree‐chromatic number of G is the minimum chromatic number of all tree‐decompositions of G. The path‐chromatic number of G is defined analogously. In this article, we introduce an operation that always increases the path‐chromatic number of a graph. As an easy corollary of our construction, we obtain an infinite family of graphs whose path‐chromatic number and tree‐chromatic number are different. This settles a question of Seymour (J Combin Theory Ser B 116 (2016), 229–237). Our results also imply that the path‐chromatic numbers of the Mycielski graphs are unbounded.  相似文献   

4.
5.
Let m1,m2,…,mt be a list of integers. It is shown that there exists an integer N such that for all n?N, the complete graph of order n can be decomposed into edge-disjoint cycles of lengths m1,m2,…,mt if and only if n is odd, 3?mi?n for i=1,2,…,t, and . In 1981, Alspach conjectured that this result holds for all n, and that a corresponding result also holds for decompositions of complete graphs of even order into cycles and a perfect matching.  相似文献   

6.
    
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

7.
    
Let be the family of graphs G such that all sufficiently large k ‐connected claw‐free graphs which contain no induced copies of G are subpancyclic. We show that for every k≥3 the family is infinite and make the first step toward the complete characterization of the family . © 2009 Wiley Periodicals, Inc. J Graph Theory 62, 263–278, 2009  相似文献   

8.
    
It is easy to characterize chordal graphs by every k‐cycle having at least f(k) = k ? 3 chords. I prove new, analogous characterizations of the house‐hole‐domino‐free graphs using f(k) = 2?(k ? 3)/2?, and of the graphs whose blocks are trivially perfect using f(k) = 2k ? 7. These three functions f(k) are optimum in that each class contains graphs in which every k‐cycle has exactly f(k) chords. The functions 3?(k ? 3)/3? and 3k ? 11 also characterize related graph classes, but without being optimum. I consider several other graph classes and their optimum functions, and what happens when k‐cycles are replaced with k‐paths. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:137‐147, 2011  相似文献   

9.
    
A graph G is a quasi‐line graph if for every vertex v, the set of neighbors of v can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. A theorem of Shannon's implies that if G is a line graph, then it can be properly colored using no more than 3/2 ω(G) colors, where ω(G) is the size of the largest clique in G. In this article, we extend this result to all quasi‐line graphs. We also show that this bound is tight. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
We introduce a new technique for packing pairwise edge-disjoint cycles of specified lengths in complete graphs and use it to prove several results. Firstly, we prove the existence of dense packings of the complete graph with pairwise edge-disjoint cycles of arbitrary specified lengths. We then use this result to prove the existence of decompositions of the complete graph of odd order into pairwise edge-disjoint cycles for a large family of lists of specified cycle lengths. Finally, we construct new maximum packings of the complete graph with pairwise edge-disjoint cycles of uniform length.  相似文献   

11.
We give new lower bounds for the minimal number of simplices needed in a triangulation of the product of two convex polygons, improving the lower bounds in Bowen et al. (Topology 44:321–339, 2005).  相似文献   

12.
    
It is proven that if G is a 3‐connected claw‐free graph which is also H1‐free (where H1 consists of two disjoint triangles connected by an edge), then G is hamiltonian‐connected. Also, examples will be described that determine a finite family of graphs such that if a 3‐connected graph being claw‐free and L‐free implies G is hamiltonian‐connected, then L . © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002  相似文献   

13.
He, Hou, Lih, Shao, Wang, and Zhu showed that a planar graph of girth 11 can be decomposed into a forest and a matching. Borodin, Kostochka, Sheikh, and Yu improved the bound on girth to 9. We give sufficient conditions for a planar graph with 3-cycles to be decomposable into a forest and a matching.  相似文献   

14.
    
For each , we show that any graph G with minimum degree at least has a fractional Kr‐decomposition. This improves the best previous bounds on the minimum degree required to guarantee a fractional Kr‐decomposition given by Dukes (for small r) and Barber, Kühn, Lo, Montgomery, and Osthus (for large r), giving the first bound that is tight up to the constant multiple of r (seen, for example, by considering Turán graphs). In combination with work by Glock, Kühn, Lo, Montgomery, and Osthus, this shows that, for any graph F with chromatic number , and any , any sufficiently large graph G with minimum degree at least has, subject to some further simple necessary divisibility conditions, an (exact) F‐decomposition.  相似文献   

15.
    
A graph has a -decomposition if its edge set can be partitioned into cycles of length . We show that if , then has a -decomposition, and if , then has a -decomposition, where and (we assume is large and satisfies necessary divisibility conditions). These minimum degree bounds are best possible and provide exact versions of asymptotic results obtained by Barber, Kühn, Lo and Osthus. In the process, we obtain asymptotic versions of these results when is bipartite or satisfies certain expansion properties.  相似文献   

16.
    
Let T be the line graph of the unique tree F on 8 vertices with degree sequence (3,3,3,1,1,1,1,1), i.e., T is a chain of three triangles. We show that every 4‐connected {T, K1,3}‐free graph has a hamiltonian cycle. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 262–272, 2005  相似文献   

17.
Define a k-star to be the complete bipartite graph K1,k. In a 2014 article, Hoffman and Roberts prove that a partial k-star decomposition of Kn can be embedded in a k-star decomposition of Kn+s where s is at most 7k?4 if k is odd and 8k?4 if k is even. In our work, we offer a straightforward construction for embedding partial k-star designs and lower these bounds to 3k?2 and 4k?2, respectively.  相似文献   

18.
A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In [8], Lutz has classified all the weakly regular triangulations on at most 15 vertices. In [5], Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices. In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists ann-vertex degree-regular triangulation of the Klein bottle if and only if n is a composite number ≥ 9. We have constructed two distinctn-vertex weakly regular triangulations of the torus for eachn ≥ 12 and a (4m + 2)-vertex weakly regular triangulation of the Klein bottle for eachm ≥ 2. For 12 ≤n ≤ 15, we have classified all then-vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.  相似文献   

19.
    
We show that every 3‐connected claw‐free graph which contains no induced copy of P11 is hamiltonian. Since there exist non‐hamiltonian 3‐connected claw‐free graphs without induced copies of P12 this result is, in a way, best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 111–121, 2004  相似文献   

20.
    
Let G be a connected graph and let eb(G) and λ(G) denote the number of end‐blocks and the maximum number of disjoint 3‐vertex paths Λ in G. We prove the following theorems on claw‐free graphs: (t1) if G is claw‐free and eb(G) ≤ 2 (and in particular, G is 2‐connected) then λ(G) = ⌊| V(G)|/3⌋; (t2) if G is claw‐free and eb(G) ≥ 2 then λ(G) ≥ ⌊(| V(G) | − eb(G) + 2)/3 ⌋; and (t3) if G is claw‐free and Δ*‐free then λ(G) = ⌊| V(G) |/3⌋ (here Δ* is a graph obtained from a triangle Δ by attaching to each vertex a new dangling edge). We also give the following sufficient condition for a graph to have a Λ‐factor: Let n and p be integers, 1 ≤ pn − 2, G a 2‐connected graph, and |V(G)| = 3n. Suppose that GS has a Λ‐factor for every SV(G) such that |S| = 3p and both V(G) − S and S induce connected subgraphs in G. Then G has a Λ‐factor. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 175–197, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号