首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch sorption experiments were performed to remove Eu(III) ions from aqueous solutions by using attapulgite under ambient conditions. Different experimental conditions, such as contact time, solid content, foreign ions, pH, ionic strength, fulvic acid and temperature, have been investigated to study their effect on the sorption property. The results indicated that the sorption of Eu(III) onto attapulgite was strongly dependent on pH, ionic strength and temperature. The sorption increased from about 8.9 to 90% at pH ranging from 2 to 6 in 0.01 mol/L NaNO3 solution. The Eu(III) kinetic sorption on attapulgite was fitted by the pseudo-second-order model better than by the pseudo-first-order model. The sorption of Eu(III) onto attapulgite increased with increasing temperature and decreasing ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms, and the results indicated that the Freundlich model simulated the data better than the Langmuir model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were determined from the temperature dependent isotherms at 298.15, 318.15 and 338.15 K, and the results indicated that the sorption reaction was an endothermic and spontaneous process. The results suggest that the attapulgite is a suitable material as an adsorbent for preconcentration and immobilization of Eu(III) from aqueous solutions.  相似文献   

2.
This paper discusses the sorption properties for U(VI) by alginate coated CaSO4·2H2O sepiolite and calcined diatomite earth (Kieselguhr) (ACSD). The removal of U(VI) from aqueous solution by sorption onto ACSF in a single component system with various contact times, pH, temperatures, and initial concentrations of U(VI) was investigated. The sorption patterns of uranium on the composite adsorbent followed the Langmuir, Freundlich and Dubinin-Radushkhevic (D-R) isotherms. The Freundlich, Langmuir, and D-R models have been applied and the data correlated well with Freundlich model and that the sorption was physical in nature (sorption energy, E a = 17.05 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK 0 vs. 1/T plots. Thermodynamic parameters (ΔH ads = 31.83 kJ/mol, ΔS ads = 167 J/mol·K, ΔG o ads (293.15 K) = −17.94 kJ/mol) showed the endothermic heat of sorption and the feasibility of the process. The thermodynamics of U(VI) ion/ACSD system indicates the spontaneous and endothermic nature of the process. It was noted that an increase in temperature resulted in a higher uranium loading per unit weight of the adsorbent.  相似文献   

3.
Application study for the evaluation of sorption characteristics of sawdust as an economical sorbent material used for decontamination of radioisotopes cesium and europium from aqueous solution has been carried out in the present work. In this respect, sawdust (untreated and treated by HNO3) has been prepared from the commercial processing of wood for furniture production. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption and DFT software. Radiotracer method onto sawdust from aqueous solutions was studied in a batch technique with respect to pH, contact time, temperature. The kinetics of adsorption of Eu3+ and Cs+ have been discussed using five kinetic models namely, pseudo-first-order model, pseudo-second-order model, Elovich equation, intraparticle diffusion model, and modified Freundlich equation that have been tested in order to analysis the experimental data. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the sorption kinetics for two metal ions. The metal uptake process was found to be controlled by intraparticle diffusion. Thermodynamic parameters, such as ΔH, ΔG and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures. The obtained results indicated that endothermic nature of sorption process for both 152+154Eu and 134Cs onto sawdust.  相似文献   

4.
Zn(II) ions sorption onto N‐Benzoyl‐N‐Phenylhydroxylamine (BPHA) impregnated polyurethane foam (PUF) has been studied extensively using radiotracer and batch techniques. Maximum sorption (~98%) of Zn(II) ions (8.9 × 10?6 M) onto sorbent surface is achieved from a buffer of pH 8 solution in 30 minutes using 7.5 mg/mL of BPHA‐impregnated polyurethane foam at 283 K. The sorption data follow Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The Langmuir constants Q = 18.01 ± 0.38 μ mole g?1 and b = (5.39 ± 0.98) × 103 L mole?1 have been computed. Freundlich constants 1/n = 0.29 ± 0.01 and Cm = 111.22 ± 12.3 μ mole g?1 have been estimated. Sorption capacity 31.42 ± 1.62 μ mole g?1, β = ?0.00269 ± 0.00012 kJ2 mole?2 and energy 13.34 ± 0.03 kJ mole?1 have been evaluated using D‐R isotherm. The variation of sorption with temperature yields ΔH = ?77.7 ± 2.8 k J mole?1, ΔS = ?237.7 ± 9.3 J mole?1 K?1 and ΔG = ?661.8 ± 117.5 k J mol?1 at 298 K reflecting the exothermic and spontaneous nature of sorption. Cations like Fe(III), Ce(III), Al(III), Pb(II) and Hg(II) and anions, i.e., oxalate, EDTA and tartrate, reduce the sorption significantly, while iodide and thiocyanate enhanced the sorption of Zn(II) ions onto BPHA‐impregnated polyurethane foam.  相似文献   

5.
The uptake of Zn(II)-SCN complex onto polyurethane foam (PUF) has been investigated in detail with respect to different composition and variable concentration of electrolyte, zinc, thiocyanate ions and PUF, and equilibration time. The sorption data followed both Langmuir and Dubinin-Radushkevich (D-R) sorption isotherms over the entire concentration range of zinc investigated whereas Freundlich sorption isotherm is obeyed upto 13.6.10-3M concentration. The Langmuir constants Q = 202±7 mmole.g-1 and of b = (1.78±0.31.104 dm3.mole-1 and of D-R paraneter X m = 493±1 mmole.g-1, b = activity coefficient = -0.028±0.0002 and of sorption energy E = 13.2±0.5 kJ.mole-1 and Freundlich constants 1/n = 0.42±0.03 and c m = 6.47±1.7 mmole.g-1 were evaluated. The influence of temperature variation on sorption have yielded DH = -77.5±2.9 kJ.mole-1, DS = -5±0.09 J.mole-1.K-1 and DG = -6.67±0.05 kJ.mole-1. The effect of common anions and cations on the sorption has been examined. Sulphate, ascorbate and bromide ions enhances the sorption to some extent whereas nitrite, Pb(II), Fe(III), Al(III), Cu(II) and Co(II) decrease to sorption significantly. A possible mechanism has been envisaged for Zn(II)-SCN sorption onto PUF.  相似文献   

6.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

7.
Summary The sorption of Eu(III) ions onto PAN loaded PUF has been optimized and investigated under the influence of various temperatures, i.e., 303, 313 and 323 K. Maximum retention (>96%) of Eu(III) ions (1.79. 10-5M) onto PAN loaded PUF (7.75 mg. ml-1) was achieved after 30-minute equilibration time from pH 7 buffer solution. The variation of sorption with temperature yields the thermodynamic parameters ΔH=79±2 kJ. mol-1, ΔS=276±7 kJ. mol-1. K-1and ΔG=-1.4±0.1 kJ. mol-1at 298 K. The positive value of enthalpy and negative free energy show endothermic and spontaneous nature of sorption, respectively. The sorption data followed Freundlich, Dubinin-Radushkevich (D-R) and Langmuir isotherms at all the three given temperatures. The Freundlich constant 1/n=0.70, 0.62 and 0.55 and sorption capacities Cm=10.8 mmol. g-1, 6.1 mmol. g-1and 4.4 mmol. g-1, respectively, decreased with increasing temperature. Similarly, the sorption capacities of D-R isotherm Xm=197.6 μmol. g-1, 201.2 μmol. g-1and 137.4 μmol. g-1, also decreased with temperature. However, the sorption free energy E=10.2 kJ. mol-1, 11.2 kJ. mol-1and 12.7 kJ. mol-1, increased with temperature. The monolayer coverage (Q) computed from Langmuir isotherm was 11.1±0.6 μmol. g-1and remains constant at all the three temperatures investigated. However, the binding energy constant bincreased with temperature. The relationship of bwith temperature and differential heat of adsorption (ΔHdiff) have been evaluated and discussed.  相似文献   

8.
Sorption on bentonite will play an important role in retarding the migration of radionuclides from a waste repository. Bentonite is characterized by low permeability, water swelling capability and excellent sorption potential for cationic radionuclides. To correctly assess the sorption potential of radionuclides on bentonite is essential for the development of predictive migration models. The sorption isotherm model is usually used to describe the sorption behavior and assess the sorption potential of radionuclides on bentonite. However, there are few studies to investigate the feasibility of isotherm models for the sorption of radionuclides on bentonite. Thus, in this study, we compared the goodness-of-fit of linear and nonlinear forms of two common isotherm models, Langmuir and Freundlich equations. The experimental sorption isotherms of strontium (Sr) on Wyoming bentonite, MX-80, were used for illustration. The results showed that the nonlinear forms of Langmuir and Freundlich isotherm models are more suitable for fitting the experimental sorption isotherms of Sr on MX-80 than are the linear forms. Thus, the nonlinear forms of isotherm models should be primarily adopted to fit experimental isotherms. On the other hand, we also found that the goodness-of-fit of Langmuir model is better than that of Freundlich model. Moreover, based on the theoretical assumptions of Langmuir isotherm model, the parameters M and K L represent the sorption capacity and affinity, respectively. One can use the values of M and K L , obtained from fitting the experimental isotherms, to assess the sorption potential of radionuclides in bentonite. Thus, we suggested that the Langmuir isotherm model is more useful for investigating the sorption behavior of radionuclides on bentonite.  相似文献   

9.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

10.
Summary The sorption of microquantities of Tm(III) ions on washed polyurethane foam (PUF) from a mixture of aqueous solution and ethanol containing PAN was examined. The maximum sorption of 3.18. 10-6M solution of Tm(III) ions was observed at pH 8 with 30-minute equilibration time. The optimum ratio of aqueous-ethanol phase for the sorption of Tm(III) ions was found to be 3:1 v/v, respectively. The sorption rate of metal ions on PUF is followed a first order kinetics and obeyed the equation for an intra particle diffusion process. The equilibrium concentration data of Tm(III) ions could be described satisfactorily by several adsorption isotherms. The Freundlich adsorption isotherm constants 1/nand KFare 0.66±0.02 and (5.7±0.3). 10-3mol. g-1, respectively. The Langmuir isotherm constants for monolayer coverage (Q) and binding strength of sorption (b) are (2.5±0.7). 10-5mol. g-1and (1.6±0.1). 104l. mol-1, respectively. The sorption capacity derived from Dubinin-Radushkevich (D-R) isotherm is (1.7±0.2). 10-4mol. g-1and the sorption free energy (E) is 9.8±0.2 kJ. mol-1indicating chemisorption phenomena. The thermodynamic parameters indicate that the sorption of Tm(III) ions onto PUF is endothermic, entropy driven and spontaneous in nature.  相似文献   

11.
Ulva sp. and sepiolite were used to prepare composite adsorbent. The adsorption of uranium(VI) from aqueous solutions onto Ulva sp.-sepiolite has been studied by using a batch adsorber. The parameters that affect the uranium(VI) adsorption, such as solution pH, initial uranium(VI) concentration, and temperature, have been investigated and the optimum conditions determined. The adsorption patterns of uranium on the composite adsorbent followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models have been applied and the data correlate well with Freundlich model. The sorption is physical in nature (sorption energy, E = 4.01 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK d vs. 1/T plots. Thermodynamic parameters (ΔH ads = −22.17 kJ/mol, ΔS ads = −17.47 J/mol·K, ΔG o ads (298.15 K) = −16.96 kJ/mol) show the exothermic heat of adsorption and the feasibility of the process. The results suggested that the Ulva sp-sepiolite composite adsorbent is suitable as a sorbent material for recovery and biosorption/adsorption of uranium ions from aqueous solutions.  相似文献   

12.
The accumulation of preheated chromium(III)-thiocyanate complexes onto polyurethane foam (PUF) has been studied. The maximum sorption of Cr(III) (7.01.10-5M) is occurred at pH 2 from 1.2M thiocyanate solution in 10 minute agitation time using 7.25 mg/ml PUF. The sorption data have been investigated by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich parameters 1/n = 0.31 and of K F = 9.7.10-4 mol.g-1, Langmuir constants M = 7.03.10-5 mol.g-1 and of b = 1.5.105 l.mol-1 and of D-R constants, C m = 1.91.10-4 mol.g-1, affinity coefficient b = -0.0023 mol2.kJ-2 and sorption energy E = 14.7 kJ.mol-1 have been evaluated. Thermodynamic parameters of enthalpy, entropy and Gibbs free energy suggest the endothermic and spontaneous adsorption of Cr(III)-SCN complex onto PUF at higher temperature. The influence of common anions and cations on the accumulation of chromium-thiocyanate on PUF and possible sorption mechanism of [Cr(SCN)4]- species on PUF is discussed.  相似文献   

13.
The fate and transport of toxic metal ions and radionuclides in the environment is generally controlled by sorption reactions. The removal of 60Co(II) from wastewaters by MnO2 was studied as a function of various environmental parameters such as shaking time, pH, ionic strength, foreign ions, and humic substances under ambient conditions. The results indicated that the sorption of 60Co(II) on MnO2 was strongly dependent on pH and ionic strength. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of HA/FA enhances 60Co(II) sorption at low pH values, whereas reduces 60Co(II) sorption at high pH values. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 318.15 and 338.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on MnO2 was endothermic and spontaneous.  相似文献   

14.
Biosorption of nickel ions from aqueous solutions by modified loquat bark waste (MLB) has been investigated in a batch biosorption process. The biosorbent MLB was characterized by FTIR analysis. The extent of biosorption of Ni(II) ions was found to be dependent on solution pH, initial nickel ions concentration, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by three widely used two-parameters Langmuir, Temkin and Freundlich isotherm models. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich isotherm model by high correlation coefficients R2. The maximum adsorption capacity was 27.548 mg/g of Ni(II) ions onto MLB. The thermodynamic analysis indicated that the biosorption behavior of nickel ions onto MLB biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative values of ΔG° (−5.84 kJ/mol) and positive values of ΔH° (13.33 kJ/mol) revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described well the biosorption experimental data. The modified loquat bark (MLB) was successfully used for the biosorption of nickel ions from synthetic and industrial electroplating effluents.  相似文献   

15.
Antonio P  Iha K  Suárez-Iha ME 《Talanta》2004,64(2):484-490
The adsorption of DPKSH onto silica gel was investigated, at 25±1 °C and pH 1, 4.7 and 12. For the same DPKSH concentration interval, the minimum required time of contact for adsorption maximum at pH 4.7 was smaller than at pH 1 and the maximum amount of DPKSH adsorbed per gram of silica at pH 1 is smaller than at pH 4.7. At pH 12 the DPKSH adsorption onto silica gel was not significant. The adsorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The maximum amount of solute adsorbed (madsmax) and the adsorption constant, KL, were derived from Langmuir isotherm. The Freundlich constants 1/n and KF related, respectively, to the energetic heterogeneity of adsorption sites and an empirical constant were evaluated. The mean sorption free energy (E) of DPKSH adsorption onto silica gel was calculated from D-R isotherm indicating a physical adsorption mode. Finally, conductimetric titrations showed the silica particle basicity and acidity as 0.002 and 0.3 mmol g−1, respectively.  相似文献   

16.
The present study characterises sorption of two pesticides, namely, paraquat (PQ) and 2,4-dichlorophenoxyacetic acid (2,4-D) by an Oscillatoria sp.-dominated cyanobacterial mat. Sorption of PQ onto the test mat was not significantly affected by the pH of the solution within the pH range 2–7. However, 2,4-D sorption was strongly influenced by the solution pH and was maximum at pH 2. Whereas PQ sorption increased with increase in temperature, 2,4-D sorption showed an opposite trend. The sorption of PQ and 2,4-D achieved equilibrium within 1 h of incubation, independent of concentration of pesticide and mat biomass in the solution. The pseudo-second-order kinetic model better defined PQ sorption than the pseudo-first-order model, whereas 2,4-D sorption was well defined by both the models. Sorption isotherms of both the pesticides showed L-type curve. Freundlich model more precisely defined PQ sorption than Langmuir model, thereby suggesting heterogeneous distribution of PQ binding sites onto the biomass surface. However, the Langmuir model more correctly defined 2,4-D sorption, thus, indicating homogeneous distribution of 2,4-D binding sites onto the biomass surface. The test biomass is a good sorbent for the removal of PQ because it could, independent of pH of the solution, sorb substantial amount of PQ (q max = 0.13 mmol g−1).  相似文献   

17.
In order to gain biosorbent that would have the ability to bind cesium ions from water solution effectively, potassium nickel hexacyanoferrate(II) (KNiFC) was incorporated into the mushroom biomass of Agaricus bisporus. Cesium sorption by KNIFC-modified A. bisporus biosorbent was observed in batch system, using radiotracer technique using 137Cs radioisotope. Kinetic study showed that the cesium sorption was quite rapid and sorption equilibrium was attained within 1 h. Sorption kinetics of cesium was well described by pseudo-second order kinetics. Sorption equilibrium was the best described by Freundlich isotherm and the distribution coefficient was at interval 7,662–159 cmg−1. Cesium sorption depended on initial pH of solution. Cesium sorption was very low at pH0 1.0–3.0. At initial pH 11.0, maximum sorption of cesium was found. Negative effect of monovalent (K+, Na+, NH4 +) and divalent (Ca2+, Mg2+) cations on cesium sorption was observed. Desorption experiments showed that 0.1 M potassium chloride is the most suitable desorption agent but the complete desorption of cesium ions from KNiFC-modifed biosorbent was not achieved.  相似文献   

18.
A novel adsorbent, TiO2/eggshell composite, was synthesized by sol–gel method, and characterized by XRD and FTIR. The removal of 60Co(II) from aqueous solution by TiO2/eggshell was studied as a function of contact time, pH, ionic strength, foreign ions, humic substances and temperature. The results indicated that the sorption of 60Co(II) on TiO2/eggshell was strongly dependent on pH and ionic strength. The Langmuir, Freundlich and D-R models were applied to simulate the sorption of 60Co(II) at temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on TiO2/eggshell was endothermic and spontaneous. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. TiO2/eggshell composites have good potentialities for cost-effective disposal of 60Co(II) bearing wastewaters.  相似文献   

19.
In this article, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, solid content, pH, ionic strength, foreign ions, temperature and coexisting humic acid on the sorption behavior radionuclide 60Co(II) on illite. The results indicated that the sorption of Co(II) was strongly dependent on pH, ionic strength and temperature. At low pH, the sorption was dominated by outer-sphere surface complexation and ion exchange on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on illite was an endothermic and spontaneous process. The sorption test revealed that the illite can be as a cost-effective adsorbent suitable for pre-concentration of Co(II) from large volumes of aqueous solutions.  相似文献   

20.
The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2·10−5M) and sorbent (50 mg) for 120 minutes at aV/W ratio of 90 cm3·g−1. The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, Kd, comes out to be 8.75·10−8 mol·g−1·min−1/2 and the first order rate constant for sorption is 0.0416 min−1. The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant,Q, related to sorption capacity and,b, related to sorption energy are computed to be 10.6±1.1 μmol·g−1 and 1123±137 dm3·mol−1, respectively. The D-R isotherm yields the values ofC m=348±151 μmol·g−1 and β=−0.01044±0.0008 mol2·kJ−2 and ofE=6.9±0.3 kJ·mol−1. In all three isotherms correlation factor (γ) is ≥0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. It is essential that all ions causing a decrease in the sorption of Sn(II) must be absent from the sorptive solution otherwise low sorption yields would result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号