首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this article is to offer new insight and tools toward the pursuit of the largest chromatic number in the class of thicknesstwo graphs. At present, the highest chromatic number known for a thickness‐two graph is 9, and there is only one known color‐critical such graph. We introduce 40 small 9‐critical thickness‐two graphs, and then use a newconstruction, the permuted layer graphs, together with a construction of Hajós to create an infinite family of 9‐critical thickness‐two graphs. Finally, a non‐trivial infinite subfamily of Catlin's graphs, with directly computable chromatic numbers, is shown to have thickness two. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 198–214, 2008  相似文献   

2.
3.
The second author's (B.A.R.) ω, Δ, χ conjecture proposes that every graph satisfies . In this article, we prove that the conjecture holds for all claw‐free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way, we discuss a stronger local conjecture, and prove that it holds for claw‐free graphs with a three‐colorable complement. To prove our results, we introduce a very useful χ‐preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so‐called skeletal graphs.  相似文献   

4.
Let G be a planar graph and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge‐partition into a forest and a subgraph H so that (i) Δ(H) ≤ 4 if g(G) ≥ 5; (ii) Δ(H) ≤ 2 if g(G) ≥ 7; (iii) Δ(H)≤ 1 if g(G) ≥ 11; (iv) Δ(H) ≤ 7 if G does not contain 4‐cycles (though it may contain 3‐cycles). These results are applied to find the following upper bounds for the game coloring number colg(G) of a planar graph G: (i) colg(G) ≤ 8 if g(G) ≥ 5; (ii) colg(G)≤ 6 if g(G) ≥ 7; (iii) colg(G) ≤ 5 if g(G) ≥ 11; (iv) colg(G) ≤ 11 if G does not contain 4‐cycles (though it may contain 3‐cycles). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 307–317, 2002  相似文献   

5.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

6.
In this paper, some identities between the Catalan, Motzkin and Schröder numbers are obtained by using the Riordan group. We also present two combinatorial proofs for an identity related to the Catalan numbers with the Motzkin numbers and an identity related to the Schröder numbers with the Motzkin numbers, respectively.  相似文献   

7.
In this article, we define and study a new family of graphs that generalizes the notions of line graphs and path graphs. Let G be a graph with no loops but possibly with parallel edges. An ?‐link of G is a walk of G of length in which consecutive edges are different. The ?‐link graph of G is the graph with vertices the ?‐links of G , such that two vertices are joined by edges in if they correspond to two subsequences of each of μ ‐links of G . By revealing a recursive structure, we bound from above the chromatic number of ?‐link graphs. As a corollary, for a given graph G and large enough ?, is 3‐colorable. By investigating the shunting of ?‐links in G , we show that the Hadwiger number of a nonempty is greater or equal to that of G . Hadwiger's conjecture states that the Hadwiger number of a graph is at least the chromatic number of that graph. The conjecture has been proved by Reed and Seymour (Eur J Combin 25(6) (2004), 873–876) for line graphs, and hence 1‐link graphs. We prove the conjecture for a wide class of ?‐link graphs.  相似文献   

8.
9.
Hadwiger's conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw‐free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw‐free graph with chromatic number χ has a clique minor of size $\lceil\frac{2}{3}\chi\rceil$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 259–278, 2010  相似文献   

10.
Let G be a graph with vertex set V(G) and edge set E(G). A function f:E(G)→{-1,1} is said to be a signed star dominating function of G if for every vV(G), where EG(v)={uvE(G)|uV(G)}. The minimum of the values of , taken over all signed star dominating functions f on G, is called the signed star domination number of G and is denoted by γSS(G). In this paper, a sharp upper bound of γSS(G×H) is presented.  相似文献   

11.
Seymour conjectured that every oriented simple graph contains a vertex whose second neighborhood is at least as large as its first. Seymour's conjecture has been verified in several special cases, most notably for tournaments by Fisher  6 . One extension of the conjecture that has been used by several researchers is to consider vertex‐weighted digraphs. In this article we introduce a version of the conjecture for arc‐weighted digraphs. We prove the conjecture in the special case of arc‐weighted tournaments, strengthening Fisher's theorem. Our proof does not rely on Fisher's result, and thus can be seen as an alternate proof of said theorem.  相似文献   

12.
In this work, we implement a relatively new analytical technique, the exp‐function method, for solving nonlinear equations and absolutely a special form of generalized nonlinear Schrödinger equations, which may contain high‐nonlinear terms. This method can be used as an alternative to obtain analytical and approximate solutions of different types of fractional differential equations, which is applied in engineering mathematics. Some numerical examples are presented to illustrate the efficiency and the reliability of exp‐function method. It is predicted that exp‐function method can be found widely applicable in engineering. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1016–1025, 2011  相似文献   

13.
14.
Let G be an undirected graph and Gr be its r-th power. We study different issues dealing with the number of edges in G and Gr. In particular, we answer the following question: given an integer r≥2 and all connected graphs G of order n such that GrKn, what is the minimum number of edges that are added when going from G to Gr, and which are the graphs achieving this bound?  相似文献   

15.
An odd hole in a graph is an induced cycle of odd length at least five. In this article we show that every imperfect K4‐free graph with no odd hole either is one of two basic graphs, or has an even pair or a clique cutset. We use this result to show that every K4‐free graph with no odd hole has circular chromatic number strictly smaller than 4. We also exhibit a sequence {Hn} of such graphs with limn→∞χc(Hn)=4. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 303–322, 2010  相似文献   

16.
For a general dyadic grid, we give a Calderón–Zygmund type decomposition, which is the principle fact about the multilinear maximal function on the upper half‐spaces. Using the decomposition, we study the boundedness of . We obtain a natural extension to the multilinear setting of Muckenhoupt's weak‐type characterization. We also partially obtain characterizations of Muckenhoupt's strong‐type inequalities with one weight. Assuming the reverse Hölder's condition, we get a multilinear analogue of Sawyer's two weight theorem. Moreover, we also get Hytönen–Pérez type weighted estimates.  相似文献   

17.
In this paper, we consider the one‐dimensional Schrödinger operator on bounded time scales. We construct a space of boundary values of the minimal operator and describe all maximal dissipative, maximal accretive, self‐adjoint, and other extensions of the dissipative Schrödinger operators in terms of boundary conditions. In particular, using Lidskii's theorem, we prove a theorem on completeness of the system of root vectors of the dissipative Schrödinger operators on bounded time scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we study constraint minimizers of the following L 2?critical minimization problem: where E (u ) is the Schrödinger‐Poisson‐Slater functional and N denotes the mass of the particles in the Schrödinger‐Poisson‐Slater system. We prove that e (N ) admits minimizers for and, however, no minimizers for N >N ?, where Q (x ) is the unique positive solution of in . Some results on the existence and nonexistence of minimizers for e (N ?) are also established. Further, when e (N ?) does not admit minimizers, the limit behavior of minimizers as N N ? is also analyzed rigorously.  相似文献   

19.
A twofold blocking set (double blocking set) in a finite projective plane Π is a set of points, intersecting every line in at least two points. The minimum number of points in a double blocking set of Π is denoted by τ2(Π). Let PG(2,q) be the Desarguesian projective plane over GF(q), the finite field of q elements. We show that if q is odd, not a prime, and r is the order of the largest proper subfield of GF(q), then τ2PG(2,q))≤ 2(q+(q‐1)/(r‐1)). For a finite projective plane Π, let denote the maximum number of classes in a partition of the point‐set, such that each line has at least two points in some partition class. It can easily be seen that (?) for every plane Π on v points. Let , p prime. We prove that for , equality holds in (?) if q and p are large enough.  相似文献   

20.
In this paper, we investigate exact traveling wave solutions of the fourth‐order nonlinear Schrödinger equation with dual‐power law nonlinearity through Kudryashov method and (G'/G)‐expansion method. We obtain miscellaneous traveling waves including kink, antikink, and breather solutions. These solutions may be useful in the explanation and understanding of physical behavior of the wave propagation in a highly dispersive optical medium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号