首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
范威  郑国垠  范军 《声学学报》2010,35(4):419-426
研究了内部充水圆柱壳散射声场的构成。采用弹性薄壳理论和Sommerfeld-Watson变换(SWT)方法导出散射声场的解析解。数值搜索环绕波的复波数极点,比较圆柱壳体内部真空和内部充水两种情况下表面环绕波的相速度、衰减等性质。用镜反射波和环绕波的叠加合成反向散射形态函数,与简正级数解符合良好。计算流体附加环绕波的回波时序并与实验数据对照。结果表明,流体附加环绕波的再辐射是内部充水圆柱壳的形态函数出现更加丰富的共振峰和回波结构形成的重要原因。  相似文献   

2.
3.
The theory is developed for obtaining the propagation constants of a thin uniform cylindrical shell, periodically stiffened by uniform circular frames of general cross-section. The free wave motion is analyzed and the stop and pass bands of free wave motion in the structure are located. Hysteretic damping is included. The natural frequencies of two stiffened finite cylindrical shells are deduced. The relative effects of the frame cross section and pitch on the free vibration characteristics of the whole structure are discussed.  相似文献   

4.
Helical normal waves of a waveguide that has the form of a fluid-filled thin elastic shell are considered. A dispersion equation for this kind of wave is derived, and its solutions are presented for certain values of parameters characterizing the problem.  相似文献   

5.
The femoral neck cortical shell was recently demonstrated to act like a waveguide for circumferential waves. Femoral neck assessment with ultrasound could be enhanced by guided waves measurement. In this study, the decomposition of the time reversal operator (DORT) method is used to measure the phase velocities of circumferential guided modes in a circular tube with dimensions characteristic of femoral neck. The tube is made of a bone-mimicking material. Five guided modes are obtained and compared to theoretical predictions. The work substantiates the feasibility of measuring guided waves in a relatively thick tube of attenuating material with the DORT method.  相似文献   

6.
Properties of helical waves of a cylindrical shell described by Kirchhoff-Love equations are considered. The problem is reduced to the case of the propagation of plane waves in an equivalent plate. On the basis of the corresponding dispersion equation and its solution, a conclusion is made about the anisotropy of the shell properties. Dispersion curves are plotted for different angles of propagation of helical waves with respect to the shell axis. Displacements of the shell along and across the direction of wave propagation are calculated.  相似文献   

7.
8.
Dispersion relations are determined for circumferential waves propagating in a layered, circular cylinder by using shell equations to approximate the behavior of the outer layer. These equations include the effects of transverse shear deformation and rotatory inertia. The cylinder consists of an elastic core in smooth contact with a hollow, circular cylinder of distinctly different elastic properties. Two distinct modes exist as the shell thickness reduces to zero. One mode is recognized to be surface waves on the convex cylindrical surface of the core; the second mode is associated with long longitudinal waves in the shell. The approximate dispersion curves for these modes are compared with curves obtained by employing elasticity equations for the layer. As the curvature increases, the agreement of the two theories becomes progressively poorer whether or not any disagreement exists for the case of no curvature. The agreement of the two theories is better when the layer is relatively stiff than when the layer is relatively soft. The shell equations simplify the calculations necessary to produce the dispersion curves.  相似文献   

9.
The existence of various types of circumferential waves, both predominantly shell or fluid borne, and the repulsion of their dispersion curves is discussed here for an infinite, thin elastic, circular-cylindrical shell immersed in a fluid and filled with another fluid. The study is based on an analytic calculation of the partial-wave resonances in the acoustic scattering amplitude of a normally incident plane wave. A large number of cases of repulsion are found in the phase-velocity dispersion curves of the various types of circumferential waves due to the shell-fluid coupling.  相似文献   

10.
Robert S  Conoir JM  Franklin H 《Ultrasonics》2006,45(1-4):178-187
The layer-multiple-scattering method is developed to study wave propagation through two-dimensional lattices of cylindrical inclusions in an elastic medium. The lattices are a series of periodically spaced infinite one-dimensional periodic gratings (or rows) of inclusions. The layer-multiple-scattering method allows the analysis of the reflection and transmission properties of the two-dimensional lattice, provided those of each row are known. These are later determined by means of an exact multiple scattering formalism based on modal series developments. A new characteristic equation is obtained that describes the Bloch wave propagation into the infinite lattice. Lattices with empty and fluid-filled inclusions are compared. The comparison shows the existence of pass and stop bands due to the resonances of the fluid-filled inclusions. Resonant inclusions allow the opening of narrow pass bands inside phononic stop band, which is an interesting phenomenon for demultiplexing problems. It is worth noting that inclusion resonances have nothing to do with resonances due to defects, as they involve the whole lattice. In addition, it is shown that stop bands, at an oblique incidence, due to a strong coupling between longitudinal and transverse waves, are related to dispersive guided waves that propagate in the direction of the reticular planes of the lattices.  相似文献   

11.
A hybrid numerical method is proposed for analysis of transient responses in a multilayered piezoelectric cylindrical shell.In the present method,the associated equations of the displacement field and the electro-potential field are developed using an analytical-numerical method.The piezoelectric cylindrical shell is discretized into layered annular elements along the wall thickness direction.The governing equations are determined by Hamilton's Principle considering the coupling between the elastic and elec...  相似文献   

12.
We compute the Casimir stress on a perfectly conducting cylindrical shell, due to quantum field fluctuations (zero-point energy) in both the interior and exterior regions, using a Green's dyadic formulation for the field strengths. To obtain a finite answer, a frequency cutoff must be inserted, but the result is independent of that cutoff. The Casimir stress is found to be attractive, the Casimir energy per unit length for a cylinder of radius a being E = ?0.014a2.  相似文献   

13.
A new generalized sixth-order nonintegrable equation is derived to model axisymmetric longitudinal wave propagation in an inhomogeneous cylindrical shell interacting with a nonlinear elastic medium. Exact soliton-like solutions to this equation are constructed with allowance for geometric and physical nonlinearities, both individually and in combination.  相似文献   

14.
陈克安  孙朝晖  孙进才 《应用声学》1996,15(6):29-32,36
本文研究了有限长充水圆柱置于水中,外声场透射形成的腔内声场自适应有源控制实验研究,结果显示,由于圆柱结构与水介质的耦合,有源控制中的声控制方法能够较好的抵消声腔主导模态和强耦合的结构主导模态,因而能够抵消在圆柱腔内较宽频带范围的声场,实验还研究了消声频带,误差传感器布放位置及肖声区域等问题。  相似文献   

15.
In ultrasonic nondestructive inspection of large-diameter pipes and curved plate, longitudinal cracks are detected more efficiently by using guided circumferential waves. In the present, the study of guided circumferential waves and their application in detecting longitudinal defect were relative adequate when pipe material is isotropic. Based on linear three-dimensional elasticity, an orthogonal polynomial series expansions approach is used for determining the guided circumferential waves dispersion curves in homogeneous infinitely long orthotropic hollow cylinders. Results are compared with those published earlier and with the finite element simulation to check up the accuracy and range of applicability of this polynomial approach. Through the analysis of the displacements distributions and finite element simulation, the mode conversion of guided circumferential waves by end-reflection in cylindrical curved plate is discovered.  相似文献   

16.
17.
This paper presents the results of analytical and experimental investigations connected with the dynamic behaviour of a cylindrical shell with a rectangular cutout. The finite element method is used to predict the vibration frequencies and mode shapes. The resulting eigenvalue problems are solved by using a simultaneous iteration technique. The analytical study shows the influence of the cutout on the natural frequencies and mode shapes of the shell. The subtended angle of the cutout ranges from 40° to 120°. Experimental verification was performed on a machined mild steel shell having welded end rings bolted on to sturdy supports. A reasonably good agreement is obtained, with the discrepancies of the order of less than 10 %. The cutout is found to have very little influence on the natural frequencies.  相似文献   

18.
Free vibrations of a semi-infinite cylindrical shell, localized near the edge of the shell are investigated. The dynamic equations in the Kirchhoff-Love theory of shells are subjected to asymptotic analysis. Three types of localized vibrations, associated with bending, extensional, and super-low-frequency semi-membrane motions, are determined. A link between localized vibrations and Rayleigh-type bending and extensional waves, propagating along the edge, is established. Different boundary conditions on the edge are considered. It is shown that for bending and super-low-frequency vibrations the natural frequencies are real while for extensional vibrations they have asymptotically small imaginary parts. The latter corresponds to the radiation to infinity caused by coupling between extensional and bending modes.  相似文献   

19.
采用将二阶微扰近似与模式展开分析相结合的方法,可从理论上有效求解圆管结构中的非线性周向导波问题。通过数值计算和有限元仿真发现,基频与二倍频周向导波模式的相速度匹配程度,可显著影响二倍频周向导波模式随传播周向角的积累增长程度。针对基频与二倍频周向导波模式的相速度和群速度均相匹配的情形,通过实验研究发现,周向导波确可存在强烈的非线性效应,且周向导波的二次谐波发生效应可对圆管早期损伤状态做出敏感的响应。文中给出的有关结果,可为进一步开展非线性周向导波的研究工作奠定理论和实验基础。  相似文献   

20.
Acoustic compliant coatings are a common approach to mitigate the radiation and scattering of sound from fluid-loaded submerged structures. An acoustic compliant coating is a coating that decouples an acoustic source from the surrounding acoustic medium; that is, it provides an acoustic impedance mismatch (different density and speed of sound product). Such a coating is distinct from an ordinary compliant coating in that it may not be resilient in the sense of low stiffness, but still provides an acoustic impedance mismatch. Ideally, the acoustic coating is applied uniformly over the entire surface of the fluid-loaded structure to minimize the acoustic radiation and scattering. However, in certain instances, because of appendages, it may not be practically possible to completely cover the surface of a fluid-loaded structure to decouple it from the adjacent acoustic medium. Furthermore, there may be some inherent advantages to optimizing the distribution of the coating around areas from which the acoustic radiation appears to be dominant. This would be analogous to the application of damping treatment to a vibrating structure in areas where the vibration levels are highest. In the case of the acoustic radiation the problem is more complex because of the coupling between the acoustic fluid and the structure. In this paper, the influence of a partial coating on the acoustic radiation from a fluid-loaded, cylindrical shell of infinite extent and excited by either a line force or an incident plane acoustic wave is examined. The solution to the response and scattered pressure is developed following the procedure used by the authors in previous work on the scattering from fluid-loaded plates and shells. The coating is assumed to be normally reacting providing a decoupling layer between the acoustic medium and the structure; that is, it does not add mass or stiffness to the base structure. The influence of added mass or stiffness of the coating can be included as an added inhomogeneity and treated separately in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号