首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化学机械平坦化(CMP)是铜互连制备过程中唯一的全局平坦化技术。但是由于互连线铜与扩散阻挡层物理及化学性质上的差异,在阻挡层的化学机械平坦化过程中将加剧导致碟形坑的产生。目前,国际上抛光液以酸性为主,但是其存在固有的问题,如酸性气体挥发,腐蚀严重等。本论文研发出一种新型碱性阻挡层抛光液,与商用的阻挡层抛光液做对比,评估了其抛光性能。实验结果表明,新型碱性阻挡层抛光液抛光后表面状态好,粗糙度较低。另外,碟形坑及电阻测试结果表明,新型碱性阻挡层抛光后铜布线的表面形貌好,碟形坑小,能够应用于铜布线阻挡层的CMP中。  相似文献   

2.
Abstract: The stability of a novel low-pH alkaline slurry (marked as slurry A, pH = 8.5) for copper chemical mechanical planarization was investigated in this paper. First of all, the stability mechanism of the alkaline slurry was studied. Then many parameters have been tested for researching the stability of the slurry through comparing with a traditional alkaline slurry (marked as slurry B, pH = 9.5), such as the pH value, particle size and zeta potential. Apart from this, the stability of the copper removal rate, dishing, erosion and surface roughness were also studied. All the results show that the stability of the novel low-pH alkaline slurry is better than the traditional alkaline slurry. The working-life of the novel low-pH alkaline slurry reaches 48 h.  相似文献   

3.
陈蕊  康劲  刘玉岭  王辰伟  蔡婷  李新 《半导体学报》2014,35(2):026005-4
This study reports a new weakly alkaline slurry for copper chemical mechanical planarization (CMP), it can achieve a high planarization efficiency at a reduced down pressure of 1.0 psi. The slurry is studied through the polish rate, planarization, copper surface roughness and stability. The copper polishing experiment result shows that the polish rate can reach 10032 A/rain. From the multi-layers copper CMP test, a good result is obtained, that is a big step height (10870 A) that can be eliminated in just 35 s, and the copper root mean square surface roughness (sq) is very low (〈 1 rim). Apart from this, compared with the alkaline slurry researched before, it has a good progress on stability of copper polishing rate, stable for 12 h at least. All the results presented here are relevant for further developments in the area of copper CMP.  相似文献   

4.
本文提出一种碱性铜布线抛光液,其不含通用的腐蚀抑制剂,并对其化学机械抛光和平坦化 (CMP)性能进行了研究。首先研究了此抛光液对铜的静态腐蚀速率和抛光速率,并与含抑制 剂的铜抛光液做了对比实验。在静态条件下,此不含抑制剂的碱性铜抛光液对铜基本无腐蚀速率,而在动态抛光过程中对铜有较高的速率。而含抑制剂的抛光液对静态腐蚀速率略有降低,但是却大幅度降低了铜的去除速率。另外,对铜布线的化学机械平坦化研究表明,此不含抑制剂的碱性铜抛光液能够有效的去除铜布线表面的高低差,有较高的平坦化能力。此抛光液能够应用于铜CMP的第一步抛光,能够去除大量多余铜时初步实现平坦化。  相似文献   

5.
The feature scale planarization of the copper chemical mechanical planarization (CMP) process has been characterized for two copper processes using Hitachi 430-TU/Hitachi T605 and Cabot 5001/Arch Cu10K consumables. The first process is an example of an abrasive-free polish with a high-selectivity barrier slurry, while the second is an example of a conventional abrasive slurry with a low-selectivity barrier slurry. Copper fill planarization has been characterized for structures with conformal deposition as well as with bumps resulting from bottom-up fill. Dishing and erosion were characterized for several structures after clearing. The abrasive-free polish resulted in low sensitivity to overpolish and low saturation levels for dishing and erosion. Consequently, this demonstrated superior performance when compared to the International Technology Roadmap for Semiconductors (ITRS) 2000 roadmap targets for planarization. While the conventional slurry could achieve the 0.13-μm technology node requirements, the abrasive-free polish met the planarization requirements beyond the 0.10-μm technology node.  相似文献   

6.
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.  相似文献   

7.
Many researchers studying copper chemical mechanical planarization (CMP) have been focused on mechanisms of copper removal using various chemicals. On the basis of these previous works, we studied the effect of slurry components on uniformity. Chemical mechanical planarization of copper was performed using citric acid (C6H8O7), hydrogen peroxide (H2O2), colloidal silica, and benzotriazole (BTA, C6H4N3H) as a complexing agent, an oxidizer, an abrasive, and a corrosion inhibitor, respectively. As citric acid was added to copper CMP slurry (pH 4) containing 3 vol% hydrogen peroxide and 3 wt% colloidal silica, the material removal (MRR) at the wafer center was higher than its edge. Hydrogen peroxide could not induce a remarkable change in the profile of MRR. Colloidal silica, used as an abrasive in copper CMP slurry containing 0.01 M of citric acid and 3 vol% of hydrogen peroxide, controlled the profile of MRR by abrading the wafer edge. BTA as a corrosion inhibitor decreased the MRR and seems to control the material removal around the wafer center. All the results of in this study showed that the MRR profile of copper CMP could be controlled by the contents of slurry components.  相似文献   

8.
We have proposed a TSV (through-silicon-via) alkaline barrier slurry without any inhibitors for barrier CMP (chemical mechanical planarization) and investigated its CMP performance. The characteristics of removal rate and selectivity of Ti/SiO2/Cu were investigated under the same process conditions. The results obtained from 6.2 mm copper, titanium and silica show that copper has a low removal rate during barrier CMP by using this slurry, and Ti and SiO2 have high removal rate selectivity to Cu. Thus it may be helpful to modify the dishing. The TSV wafer results reveal that the alkaline barrier slurry has an obvious effect on surface topography correction, and can be applied in TSV barrier CME  相似文献   

9.
摘要:本文研究了碱性精抛液的电化学行为。主要研究内容为不同H2O2浓度电解液中腐蚀电位(Ecorr)和腐蚀电流(Icorr)的变化规律,对比了不同精抛电解液的极化曲线,分析了H2O2的钝化作用对控制碟形坑的影响。结果表明:在电化学实验过程中,随着H2O2浓度的增加,腐蚀电位逐渐增加然后趋于平缓,相反腐蚀电流逐渐减小。同时,精抛后的碟形坑随着H2O2浓度的增加而减小,平坦化效果得到了优化。  相似文献   

10.
CMP process optimization for bulk copper removal based on alkaline copper slurry was performed on a 300 mm Applied Materials Reflexion LK system. Under the DOE condition, we conclude that as the pressure increases, the removal rate increases and non-uniformity is improved. As the slurry flow rate increases, there is no significant improvement in the material removal rate, but it does slightly reduce the WIWNU and thus improve uniformity. The optimal variables are obtained at a reduced pressure of 1.5 psi and a slurry flow rate of 300 ml/min. Platen/carrier rotary speed is set at a constant value of 97/103 rpm. We obtain optimized CMP characteristics including a removal rate over 6452 A/min and non-uniformity below 4% on blanket wafer and the step height is reduced by nearly 8000 A/min in the center of the wafer on eight layers of copper patterned wafer, the surface roughness is reduced to 0.225 nm.  相似文献   

11.
A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration.Based on the action mechanism of CMP,the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process,with different process parameters,was analyzed.In addition,we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity(WIWNU) in CMP process.When the abrasive concentration is 3 wt%,in bulk elimination process,the copper removal rate achieves 6125 °/min,while WIWNU is 3.5%,simultaneously.In residual copper elimination process,the copper removal rate is approximately 2700°/min,while WIWNU is 2.8%.Nevertheless,the tantalum removal rate is 0 °/min,which indicates that barrier layer isn’t eliminated in residual copper elimination process.The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process.Meanwhile,after residual copper elimination process,the dishing value increased inconspicuously,in a controllable range,and the wafer surface roughness is only 0.326 nm(sq < 1 nm) after polishing.By comparison,the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing.All experimental results are conducive to research and improvement of alkaline slurry in the future.  相似文献   

12.
化学机械抛光是集成电路制造工艺中十分精密的技术。在本文中,为了改善抛光效果,分表讨论了非离子表面活性剂和氧化剂在CMP过程中作用。我们主要分析了非离子表面活性剂对片内非均匀性和表面粗糙度的影响。同时,我们从静态腐蚀速率、电化学曲线和剩余高低差的角度,讨论了在不加BTA条件下,不同氧化剂浓度的抛光液的钝化特性。实验结果明显地表明:加入了非离子表面活性剂的抛光液,更有利于改善抛光后的片内非均匀性和表面粗糙度,并确定2vol%体积分数是比较合适的浓度。当抛光液中氧化剂浓度超过3vol%,抛光液拥有较好的钝化能力,能够有效减小高低差,并有助于获得平整和光滑的表面。根据这些实验结果,非离子表面活性剂和氧化剂的作用进一步被了解,将有助于抛光液性能的改善。  相似文献   

13.
The copper removal rate and uniformity of two types copper slurries were investigated, which was performed on the 300 mm chemical mechanical planarization (CMP) platform. The experiment results illustrate that the removal rate of the two slurries is nearly the same. Slurry A is mainly composed ofa FA/OI1 type chelating agent and the uniformity reaches to 88.32%. While the uniformity of slurry B is 96.68%, which is mainly composed of a FA/OV type chelating agent. This phenomenon demonstrates that under the same process conditions, the uniformity of different slurries is vastly different. The CMP performance was evaluated in terms of the dishing and erosion values. In this paper, the relationship between the uniformity and the planarization was deeply analyzed, which is mainly based on the endpoint detection mechanism. The experiment results reveal that the slurry with good uniformity has low dishing and erosion. The slurry with bad uniformity, by contract, increases Cu dishing significantly and causes copper loss in the recessed region. Therefore, the following conclusions are drawn: slurry B can improve the wafer leveling efficiently and minimize the resistance and current density along the line, which is helpful to improve the device yield and product reliability. This investigation provides a guide to improve the uniformity and achieve the global and local planarization. It is very significant to meet the requirements for 22 nm technology nodes and control the dishing and erosion efficiently.  相似文献   

14.
ULSI中多层Cu布线CMP表面粗糙度的分析和研究   总被引:3,自引:1,他引:2  
分析介绍了Cu层表面粗糙度对器件性能的影响以及超大规模集成电路中多层Cu布线CMP的作用机理,研究分析了碱性抛光液对Cu的表面粗糙度的影响因素,如磨料、氧化剂、pH值、表面活性剂等对表面粗糙度的影响。实验证明,在一定的抛光条件下,选用SiO2为磨料、双氧水为氧化剂的碱性抛光液可以有效降低Cu层的表面粗糙度,使之达到纳米级,得到良好的抛光效果,从而解决了超大规模集成电路多层Cu布线化学机械抛光中比较重要的技术问题。  相似文献   

15.
蒋勐婷  刘玉岭 《半导体学报》2014,35(12):126001-5
Chemical mechanical planarization(CMP) is a critical process in deep sub-micron integrated circuit manufacturing. This study aims to improve the planarization capability of slurry, while minimizing the mechanical action of the pressure and silica abrasive. Through conducting a series of single-factor experiments, the appropriate pressure and the optimum abrasive concentration for the alkaline slurry were confirmed. However, the reduced mechanical action may bring about a decline of the polishing rate, and further resulting in the decrease of throughput.Therefore, we take an approach to compensating for the loss of mechanical action by optimizing the composition of the slurry to enhance the chemical action in the CMP process. So 0.5 wt% abrasive concentration of alkaline slurry for copper polishing was developed, it can achieve planarization efficiently and obtain a wafer surface with no corrosion defect at a reduced pressure of 1.0 psi. The results presented here will contribute to the development of a “softer gentler polishing” technique in the future.  相似文献   

16.
The surface roughness seriously affects the performance of devices after barrier CMP. Due to the high surface roughness of copper line, the local resistance of a device will be high when working, then the copper line will overheat prompting the generation of electro-migration and the circuit will lose efficacy. Reducing the surface roughness of the copper line in barrier CMP is still an important research topic. The main factors influencing the surface roughness of copper line in alkaline barrier slurry are analyzed in the paper. Aimed at influencing the law on the surface roughness of copper line, using a new type of alkaline barrier slurry with a different p H of the chelating agent and changing the content of non-ionic surfactant, we then analyze the influencing law both on the surface roughness of copper line, and the influence mechanism. The experimental results show that with a chelating agent with a low p H value in the barrier slurry, the surface roughness of the copper line is 1.03 nm and it is the lowest in all of the barrier slurries, and with the increase of non-ionic surfactant concentration, the surface roughness of copper line is reduced to 0.43 nm, meeting the demand of further development of integrated circuits.  相似文献   

17.
ULSl制备中Cu布线的CMP技术及抛光液的研究   总被引:2,自引:0,他引:2  
对ULSI制备中铜布线技术作了系统的介绍,对CMP相关技术抛光机理、浆料的种类及成分均作了整体的分析和论述,并对目前存在问题及解决的方法和发展方向进行了分析讨论。此外,还对新研制的一种新型、高效、无污染的浆料进行介绍了。  相似文献   

18.
In this paper, the contact stress distribution on the wafer surface in multi-zone CMP is investigated using finite-element analysis based on a 12-in. and four-zone CMP model. Afterwards, a 12-in. and four-zone polishing head with the same size as the numerical model is developed and CMP experiments are carried out to verify the above numerical calculations. The results show that both the contact stress on the wafer surface and the material removal rate of the wafer can be adjusted by varying the applied load at the zones and the retaining ring in multi-zone CMP, the multi-zone MRR model appears to agree well with the experimental data, and the non-uniformity material removal rate of the wafer can be improved in multi-zone CMP. It is expected that this investigation can give some direct assistance to the 12-in. wafer fab.  相似文献   

19.
在阻挡层化学机械抛光中,实现可控的铜,钽,介质去除速率选择比是一项挑战。双氧水作为氧化剂加上BTA作为抑制剂的作用被认为是一种有效的方法。但是,由于双氧水易于分解使得含有双氧水的抛光液使用寿命短。另外,BTA对抛光后清洗带来挑战:在片子表面残留有毒的有机物和颗粒。最近,我们一直致力于研究一种不加氧化剂和BTA的阻挡层抛光液。在这些工作的基础上,本文的目的是通过实验研究抛光液中不同的组分(包括硅溶胶,FA/O螯合剂,溶液PH,硝酸)胍)对铜,钽,介质去除速率的影响来讨论配置这种新型的不加BTA和氧化剂的阻挡层抛光液的机理。相关可能的抛光机也会在本论文中提出。  相似文献   

20.
Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps:stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O Ⅱ and the preference adsorption mechanism of FA/O Ⅰ nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2 ,0.5 wt.% FA/O Ⅱ and 1.0 wt.% FA/O Ⅰ nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2 , 0.4 wt.% FA/O Ⅱ and 2.0 wt.% FA/O Ⅰ nonionic surfactant are added. The polishing experiments show that the removal rates are 3000±50 Å/min and 1600±60 Å/min, respectively. The surface roughnesses are 2.05±0.128 nm and 1.59±0.081 nm, respectively. A combination of the functions of FA/O Ⅱ and FA/O Ⅰ nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号