首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra in the O H stretching region of aqueous salt solutions were measured and compared, and the effects of metal ions on water structure deduced. The effects of alkali ions, alkaline ions or the first‐row transition metals on water structure were found to be similar. Differences of metal ionic effects on water structure exist among Na+, Mg2+ and Al3+, and between Ca2+ and Mn2+ and Al3+ and Fe3+. The factors that influence the metal ionic effects on the water structure are the ionic charge, the outmost electronic structure and ionic size, the ionic charge being the most important. With a five‐component Gaussian deconvolution of the Raman spectra of the aqueous solutions of NaCl, MgCl2, AlCl3 and FeCl3 with concentrations of 0 to ∼1mol/l, the ionic effects were found to be similar on the bands at 3233, 3393, 3511 and 3628 cm−1, but different on the band at 3051 cm−1. With increasing polarization of the metal ion, the band at 3051 cm−1, due to strong hydrogen bonding, increases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
There are presented measurements of the NMR field shifts for aqueous protons in aqueous solutions containing paramagnetic inorganic compounds of Cu2+, Cr3+, Fe3+ and Mn2+ ions. The measurements have been performed on samples in the form of transversally magnetized long cylinders using both the internal and external NMR standards. The experimentally determined shifts are related to the NMR field position of protons in pure water. The results for demagnetizing shifts are compared with the data which were computed from the magnetic susceptibility values (measured by magnetostatic method), the chemical shifts are compared with the results of other authors. Results of measurements indicate a small chemical shift of internal standards in some solutions.  相似文献   

3.
The ionic exchange behavior of Zn2+, Ni2+, and Cu2+ metallic ions on Amberlyst-15 commercial resin was studied as a function of resin solution contact time, initial concentration of metallic ions, nature of the solvent, and the amount of resin. The metallic ions were studied in ternary mixtures using both column and batch experiments. In addition, water, methanol, ethanol, and propan-2-ol were used as solvents for dissolving metallic ions. It was found that the resin behavior depends on the solvent nature and the metallic ion concentration. The analysis of solutions by atomic absorption spectrometry revealed that the affinity of the resin for the studied metallic ions followed the sequence Cu2+ > Ni2+ > Zn2+ in the case of an aqueous medium. Furthermore, uptake increased with increasing amount of resin. A better uptake was observed in the case of the 75:25 % water/methanol compositions when the column technique was used. For the batch technique, we noted a better uptake using 100 % water. The uptake rate decreased with an increase in the number of carbons for the 50 % water–50 % alcohol solvents. The acid–base properties of Amberlyst-15 commercial resin were studied by 2-propanol decomposition test. Propene and acetone are the main expected products and it is believed that they are formed through dehydration or dehydrogenation reaction on acid and base sites, respectively.  相似文献   

4.
ZnO nanopowders doped with Mn2+, Ni2+, Co2+ and Cr3+ ions have been synthesised for the first time using a solvothermal reaction with microwave heating. The nanopowders were produced from a solution of zinc acetate and manganese (II), chromium (III), nickel (II) and cobalt (II) acetates, using ethylene glycol as a solvent. The content of Ni2+, Co2+ and Cr3+ ions in the solution and in the solid phase were close to each other up to 5 mol%. The doping level of Mn2+ ions in the solid is about 50% of that in the solution. No phases or compounds other than ZnO were detected by X-ray diffraction with Mn2+, Co2+ and Ni2+ doping. With Cr3+ ions a small amount of chromium oxide was found. None of the powders displayed any luminescence after doping. The Mn2+-doped powder displayed a paramagnetic behaviour. ESR and magnetisation investigations have revealed that no clustering of Mn2+ ions occurred up to a doping level of 3.9 mol%. The average grain size of powders doped with Ni2+, Cr3+, Co2+ and Mn2+ for a 10 mol% ion content in the solution was about 20 nm and the grain size dispersion 30%. With increasing dopant content the grain size decreased. It appears that the solvothermal process employed allows relatively high doping levels of the transition metal ions to be achieved without any dopant clustering or oxide precipitation.  相似文献   

5.
本文基于密度泛函理论研究了在水溶液中不同结构冠醚对Li~+的选择性.通过对几何结构、结合能和热力学的计算,发现15-冠-5(15C5)对Li~+的选择性强于12-冠-4(12C4)和18-冠-6(18C6).苯并15-冠-5(B15C5)与Li~+的结合能小于15C5,但在溶液巾结合Li~+时具有更低的自山能.研究了B15C5和Li、Co、Ni水合离子之间的交换反应,表明B15C5与水合锂离子之间的反应占据优势.上述结果表明采用B15C5从废旧钾离子电池浸出液中回收锂具有一定的可行性.  相似文献   

6.
Mössbauer spectroscopy has been used to study the influence of paramagnetic ions, viz. Cu2+, Cr3+, Co2+ Mn2+, Gd3+ and Dy3+ on the spin-spin relaxation time of Fe3+ ions in amorphous frozen aqueous solutions. It is found that these ions shorten the relaxation time, but the effect is much smaller than suggested earlier on the basis of measurements of relaxation of Fe3+ in an α-Al2O3 matrix. It is also found that S-state ions have a greater influence on the relaxation time than other paramagnetic ions. The spectra obtained in presence of S-state impurity ions could only be fitted by allowing the individual transition probabilities to vary independently.  相似文献   

7.
The sonochemiluminescence spectra of electron-excited ions *[Ru(bpy)3]2+ was registered for the first time during sonolysis of argon saturated aqueous solutions of Ru(bpy)3Cl2 with low concentration. At single-bubble sonolysis, the luminescence band of ruthenium is recorded at a concentration of Ru(bpy)3Cl2 from 10−6 M, and at multibubble from 10−5 M. Possible mechanisms for the appearance of the band of a tris-bipyridyl ruthenium(II) complex on the background of an structureless continuum of water in the spectra of sonoluminescence are analyzed. Based on the results of the comparison of the sonoluminescence spectra of Ru(bpy)3Cl2 aqueous solutions with the sonoluminescence spectra of aqueous solutions of rhodamine B (which has a high quantum yield of photoluminescence) it was established that a possible mechanism of sonophotoluminescence does not play a decisive role in ruthenium sonoluminescence. The effect of radical acceptors (O2, C2H5OH, Cd2+, I) on ruthenium sonoluminescence is analyzed. The most significant mechanism for the formation of electron-excited ions *[Ru(bpy)3]2+ during sonolysis is the sonochemiluminescence in oxidation-reduction reactions involving [Ru(bpy)3]2+ ions and radical products of sonolysis of water (OH, H, eaq) in the solution volume.  相似文献   

8.
The effect of metal ions (Mn+ = Na+, K+, Mg2+, Ca2+, Zn2+ and hydrated Mg2+ ions) and water molecules on the tautomerism of adenine induced by single intramolecular proton transfer (SPT) have been investigated theoretically. Calculated results show that the single proton transfer process in adenine base is favored and even becomes thermodynamically spontaneous because of the presence of Mn+ interacting at the N3 position of adenine. On the contrary, if Mn+ coordinated to N7 site, the single proton transfer process will become unfavorable than that in the neutral system. The effects of metal ions on the SPT of adenine base are more pronounced if Lewis acidity of metal ion is increased. Water plays a more important role than metal ions during the SPT process. It is found that water can act not only as a solvent but also as a mediator which gives and accepts protons to promote SPT, playing a bridge role. As a result, inclusion of a water molecule drastically reduces the energy barrier for the SPT. Moreover, two water molecules can yield larger assisting effect on the SPTs compared with one water molecule. We can conclude that the tautomerism of DNA adenine base can be modulated by the metal ions and water molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In solid solutions of alkaline-and rare-earth fluorides with a fluorite structure, ions of most elements of the rare-earth (RE) row form hexameric clusters that assimilate the minor component of the solid solutions (fluorine) and build it into the cubic fluorite lattice without changing its shape. An analysis of the EPR spectra of paramagnetic RE ions (Er3+, Tm3+, Yb3+) in clusters of diamagnetic ions (Lu3+, Y3+) confirms their hexagonal structure, which was established when studying the superstructures of the compounds under study. In such a cluster, a RE ion is in a nearly tetragonal crystal field, with the parameters of this field differing radically from those of single cubic and tetragonal RE centers in crystals with a fluorite structure. In particular, this field causes high (close to limiting) values of the g factors of the ground states of the paramagnetic RE ions. Computer simulation is used to determine the atomic structure of a hexameric cluster in MF2 crystals (M = Ca, Sr, Ba). The crystal field and energy spectrum of Er3+, Tm3+, and Yb3+ ions in such clusters are calculated, and the spectroscopic parameters of the ground states of these ions are determined. The calculations confirm the earlier assumption that the unusual EPR spectra of nonstoichiometric fluorite phases are related to RE ions in hexameric clusters.  相似文献   

10.
Time-gated luminescence detection technique using lanthanide complexes as luminescent probes is a useful and highly sensitive method. However, the effective application of this technique is limited by the lack of the target-responsive luminescent lanthanide complexes that can specifically recognize various analytes in aqueous solutions. In this work, a dual-functional ligand that can form a stable complex with Tb3+ and specifically recognize Hg2+ ions in aqueous solutions, N,N,N 1 ,N 1 -{[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-[N,N-bis(3″,6″-dithiaoctyl)-aminomethyl]- pyridine]} tetrakis(acetic acid) (BBAPTA), has been designed and synthesized. The luminescence of its Tb3+ complex is weak, but can be effectively enhanced upon reaction with Hg2+ ions in aqueous solutions. The luminescence response investigations of BBAPTA-Tb3+ to various metal ions indicate that the complex has a good luminescence sensing selectivity for Hg2+ ions, but not for other metal ions. Thus a highly sensitive time-gated luminescence detection method for Hg2+ ions was developed by using BBAPTA-Tb3+ as a luminescent probe. The dose-dependent luminescence enhancement of the probe shows a good linearity with a detection limit of 17 nM for Hg2+ ions. These results demonstrated the efficacy and advantages of the new Tb3+ complex-based luminescence probe for the sensitive and selective detection of Hg2+ ions.  相似文献   

11.
Four new Schiff base ligands carrying naphthalene groups were prepared from the reaction of 2,4-diamino-6-methyl-1,3,5-triazine and 2,4-diamino-6-undecyl-1,3,5-triazine with 2-hydroxy-1-naphthaldehyde. The influence of a series of metal ions including Cu2+, Co2+, Hg2+, Al3+, Cr3+, Fe3+, Pb2+, Ni2+, Cd2+, Zn2+, Mn2+, Ag+, Ba2+, Ca2+ and Mg2+ on the spectroscopic properties of the ligands was investigated by means of absorption and emission spectrometry. The results of spectrophotometric and spectrofluorimetric titrations disclosed the complexation stoichiometry and complex stability constant of the ligands with metal ions. A simple spectrofluorimetric method was developed using the Schiff base derived from 2,4-diamino-6-undecyl-1,3,5-triazine to determine Hg2+ ion. No cleanup or enrichment of the tap water sample was required. A modified standard addition method was used to eliminate matrix effect. The standard addition graph was linear between 0.2 and 2.6 mg/L in determination of Hg2+. Detection and quantification limits were 0.08 and 0.23 mg/L, respectively. The simple and cost-effective method can be applied to water samples.  相似文献   

12.
The kinetics and mechanism of corundum formation from hydrargillite in an water medium under sub- and supercritical conditions in the presence of manganese ions was studied. The conclusion was drawn that corundum structure formation with the insertion and uniform distribution of manganese ions occurred thanks to solid-state mobility, which appeared under the conditions of reversible dehydroxylation in the interaction of a solid matrix with an water fluid. Complex defects containing Mn2+, Mn3+, and Mn4+ ions along with hydroxyl groups and oxygen vacancies were formed when corundum was doped with manganese ions in different charge states because of redox processes in a supercritical water fluid. Corundum doped with manganese exhibited ferromagnetic properties at room temperature.  相似文献   

13.
Molecular dynamics simulations are performed to study the growth of carbon dioxide (CO2) hydrate in electrolyte solutions of NaCl and MgCl2. The kinetic behaviour of the hydrate growth is examined in terms of cage content, density profile, and mobility of ions and water molecules, and how these properties are influenced by added NaCl and MgCl2. Our simulation results show that both NaCl and MgCl2 inhibit the CO2 hydrate growth. With a same mole concentration or ion density, MgCl2 exhibits stronger inhibition on the growth of CO2 hydrate than NaCl does. The growth rate of the CO2 hydrate in NaCl and MgCl2 solutions decreases slightly with increasing pressure. During the simulations, the Na+, Mg2+, and Cl? ions are mostly excluded by the growing interface front. We find that these ions decrease the mobility of their surrounding water molecules, and thus reduce the opportunity for these water molecules to form cage-like clusters toward hydrate formation. We also note that during the growth processes, several 51263 cages appear at the hydrate/solution interface, although they are finally transformed to tetrakaidecahedral (51262) cages. Structural defects consisting of one water molecule trapped in a cage with its hydrogen atoms being attracted by two Cl? ions have also been observed.  相似文献   

14.
The moving single-bubble sonoluminescence of Ce3+ in water and ethylene glycol solutions of CeCl3 and (NH4)2Ce(NO3)6 was studied. As found, a significant part of intensity of the luminescence (100% with cerium concentration less than 10–4 M) is due to the sonochemiluminescence. A key reaction of sonochemiluminescence is the Ce4+ reduction by a solvated (or hydrated in water) electron: Ce4+ + es (eaq) → *Ce3+. Solvated electrons are formed in a solution via electrons ejection from a low-temperature plasma periodically generated in deformable moving bubble at acoustic vibrations. Reactions of heterolytic dissociation of solvents make up the source of electrons in the plasma. In aqueous CeCl3 solutions, the Ce4+ ion is formed at the oxidation of Ce3+ by OH radical. The latter species originates from homolytic dissociation of water in the plasma of the bubble, also penetrating from the moving bubble into the solution. The sonochemiluminescence in cerium trichloride solutions are quenched by the Br (acceptor of OH) and H+ ions (acceptor of eaq). In water and ethylene glycol solutions of (NH4)2Ce(NO3)6, the sonochemiluminescence also quenched by the H+ ion. The sonochemiluminescence in CeCl3 solutions is registered at [Ce3+] ≥ 10–5 M. Then the sonochemiluminescence intensity increases with the cerium ion concentration and reaches the saturation plateau at 10–2 M. It was shown that sonophotoluminescence (re-emission of light of bubble plasma emitters by cerium ions) also contributes to the luminescence of Ce3+ in solutions with [Ce3+] ≥ 10–4 M. If the cerium concentration is more than 10–2 M, a third source contributes to luminescence, viz., the collisional excitation of Ce3+ ions penetrating into the moving bubble.  相似文献   

15.
l-Tryptophan-capped carbon quantum dots (l-CQDs) were facilely synthesized through “green” methodology, and the obtained material was utilized as a sensitive and selective fluorescence sensor for mercury ion (Hg2+) in pure aqueous solutions. Carboxyl-functionalized CQDs were first green synthesized by a one-step hydrothermal route, and l-tryptophan was then attached to CQDs via direct surface condensation reaction in aqueous solution at room temperature. The as-synthesized l-CQDs had an average size of ca. 5 nm with a good dispersity in water, and exhibited a favorable selectivity for Hg2+ ions over a range of other common metal cations in aqueous solution (10 mM PBS buffer, pH 6.0). Upon the addition of Hg2+, a complete fluorescence quenching (ON–OFF switching) of l-CQDs was evident from the fluorescence titration experiment, and the fluorescence detection limit of Hg2+ was calculated to be 11 nM, which indicated that the obtained environmentally friendly l-CQDs had sensitive detection capacity for Hg2+ in aqueous solution.  相似文献   

16.
The novel water-soluble poly(vinyl alcohol) with pendant rhodamine B moiety as colorimetric and fluorescene chemosensor for Hg2+ ions was prepared by grafting poly(vinyl alcohol) using rhodamine B hydrazide and hexamethylenediisocyanate as fluorescent dye and coupling agent, respectively. Because of their good water-solubility, the polymers binding rhodamine B can be used as chemosensors in aqueous media. With the addition of Hg2+ ions into the aqueous solution, visual color changes and fluorescence enhancements were detected. In addition, we also noticed that other metal ions such as Ag+, Cd2+, Co2+, Cu2+, K+, Mg2+, Ba2+, Fe2+, Ni2+, Pb2+, Cr3+, Fe3+ and Zn2+ cannot induce obvious changes to the fluorescence spectra of the polymer chemosensors. The combination of water solubility and positive fluorescence response as well as color change are hence particularly promising for the practical utility of the sensors.  相似文献   

17.
The triplet-triplet (T-T) absorption spectra and the T-T absorption decay kinetics are measured for solutions of 9-anthracenecarboxylic acid (ACA) and its complexes with metal ions (Cd3+ and Ln3+=Y3+, La3+, Ce3+, Eu3+, Gd3+, and Tb3+) in dimethylsulfoxide (DMSO) by the methods of flashlamp and laser pulse photolysis. The rate constants k T of intracomplex quenching of the triplet state are measured for ACA complexes with ions Gd3+, Ce3+, Tb3+, and Eu3+. Larger values of k T in complexes of ACA with paramagnetic ions Ce3+, Tb3+, and Eu3+, which have low-lying energy levels, compared to the values of k T for complexes with other ligands (pyrene-3-sulfonate, pyrene-1,3,6,8-tetrasulfonate, and benzo[ghi]perylene-1,2-dicarboxylate) were explained by the lower energy of the triplet state of ACA (14400 cm?1). For a complex with a paramagnetic ion Gd3+, which has no low-lying energy levels, the value of k T is close to that measured by us earlier for the inner-sphere complex of pyrene-1,3,6,8-tetrasulfonate with the same ion. These results confirm our earlier assumption about the inner-sphere complexing of ACA with Ln3+ ions in DMSO.  相似文献   

18.
Doping is a common way to activate the behavior of ceramics. Its effect is not limited to the bulk: segregation of dopants to the surfaces also yields a way to modify, and ultimately control the crystal morphology. We propose a model that allows us to calculate the surface energy beyond the Langmuir isotherm for doped and defective surfaces from atomic-level simulations. The model also allows us to account for different compositions between the bulk and surface. Computational materials design can thus be applied to optimize simultaneously the crystal behavior at the atomic (surface structure and composition) and mesoscopic (crystal size and shape) length scales. We exemplify the model with orthorhombic CaTiO3 perovskite doped with Mg2+, Fe2+, Ni2+, Sr2+, Ba2+ and Cd2+ ions, by predicting the effect that different dopants and dopant concentrations have on the crystal morphology. We find that a higher proportion of reactive {0 2 1} and {1 1 1} surfaces are exposed with the presence of divalent Mg2+, Fe2+ and Ni2+ ions than in the undoped material and in perovskite doped with Ba2+ and Sr2+. Cd2+ has only minor effects on crystal morphologies. These findings have important implications for predicting the reactivity of crystals doped with different ions and we show how this can be related to a simple parameter such as the ionic radius. We have tested our newly derived model by comparison with laboratory flux grown single crystals of CaTiO3, (Ni, Ca)TiO3 and (Ba, Ca)TiO3 and find excellent agreement between theory and experiment.  相似文献   

19.
This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions with novel nanoparticle sorbents (Fe3O4, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe3O4, ZnO, and CuO particles had mean diameters of about 50?nm (spheroid), 25?nm (rod shape), and 75?nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0?mg?g?1, for ZnO, CuO, and Fe3O4, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd2+?>?Pb2+?>?Cu2+?>?Ni2+, while the following order was determined in multiple component solutions: Pb2+?>?Cu2+?>?Cd2+?>?Ni2+. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd2+ and Pb2+ was adsorption, whereas both Cu2+ and Ni2+ sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.  相似文献   

20.
A new adsorbent named zirconium glyphosate [Zr(O3PCH2NHCH2COOH)2·0.5H2O, denoted as ZrGP] and its selective adsorptions to Pb2+, Cd2+, Mg2+ and Ca2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO4)2], ZrGP exhibited highly selective adsorption to Pb2+ in solution which contained Pb2+, Cd2+, Mg2+ and Ca2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg2+ and Ca2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号