首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main elements needed for the realization of a compact femtosecond methane optical clock are developed and studied. A femtosecond laser system on an Er3+ fiber (λ = 1.55 μm) contains an oscillator, an amplifier, and a fiber with a relatively high nonlinearity in which the supercontinuum radiation is generated in the range 1–2 μm. In the supercontinuum spectrum, the fragments separated by an interval that is close to the methane-optical reference frequency (λ = 3.39 μm) exhibit an increase in intensity. The supercontinuum radiation is converted into the difference frequency in a nonlinear crystal to the range of the methane-reference frequency (λ = 3.3–3.5 μm), so that the frequency components of the transformed spectrum have sufficient intensities for the subsequent frequency-phase stabilization with respect to the methane reference. A system that stabilizes the pulse repetition rate of the femtosecond Er3+ laser is also employed. Thus, the repetition rate of the ultrashort pulses of the femtosecond fiber laser is locked to the methane reference. The pulse repetition rate is compared with the standard second. Thus, the scheme of an optical clock is realized.  相似文献   

2.
超快强激光在光学介质(如空气)中传播时由于克尔自聚焦效应和等离体散焦效应动态平 衡会发生一种独特的非线性激光成丝现象。激光成丝过程会诱导一些独特的物理现象,如非线性 光频转换产生超连续光谱、等离子体诱导高压放电、锥形辐射等,在大气传感、天气控制等研究 领域具有重要的应用前景。本文针对飞秒激光大气成丝过程中与传输介质相互作用所诱导的非线 性发光过程,介绍了激光大气成丝所产生的超连续光谱(白光)激光、谐波产生和太赫兹波辐射 三种非线性光频转换现象,并着重探讨了太赫兹波辐射的物理机理、研究现状和应用前景。  相似文献   

3.
A new approach to the generation of uniformly sliced supercontinuum is reported. It is based on a multi-pulse pumped distributed feedback dye laser rather than on the conventional propagation of femtosecond pulses through air or photonic molecules. Recent developments in supercontinuum generation and laser filamentation are critically reviewed to relate our findings to published work. Novelty of the proposed technique, in terms of ease of generation and economy, makes the method an attractive alternative. This work was carried out by pumping dye solution with six beams of a Q. switched and mode-locked Nd:YAG laser. A total energy of 421 J was used to generate a 5.5 nm wide discrete supercontinuum consisting of nine distinct coherent lines. The principle of multiple line generation may be extended to any desired spectral range depending upon the available gain medium and number of pumping pulses. Threshold power intensity for sliced supercontinuum generation using a frequency doubled Nd:YAG laser for solution of R6G in ethanol is found to be less than 24×108 W/cm2. Successful design and operation of a coherent off-white discrete supercontinuum source is also presented. PACS 42.60.By; 42.65.Re; 42.25.Bs  相似文献   

4.
We experimentally demonstrate highly efficient multiplex frequency conversion of unamplified subnanojoule femtosecond pulses of Ti:sapphire laser radiation in fused silica microstructure fibers. Nonlinear optical spectral transformation of femtosecond pulses in an array of fused silica threadlike channels in these microstructure fibers results in the generation of isolated anti-Stokes spectral components within the wavelength range of 400–500 nm. An efficiency of frequency conversion of about 20% is achieved for 800-nm pump pulses with an energy of 0.7 nJ and a pulse duration of 70 fs.  相似文献   

5.
A simple interference model is proposed for conical emission frequency-angular spectrum formation during the filamentation of femtosecond laser pulse in a nonlinear dispersive medium. The model allows to obtain analytical expressions for frequency-angular distributions of the supercontinuum spectral components of pulses at different wavelengths in media with arbitrary material dispersion law. The model reproduces the supercontinuum frequency-angular spectrum transformation for the case of laser pulse splitting into several subpulses and for multiple refocusing of the light field in filament. Frequency-angular spectra analytically calculated from the proposed interference model are in good agreement with the results of numerical simulations performed for the filamentation of femtosecond laser pulses in fused silica.  相似文献   

6.
The resonant interaction of 87Rb atoms in a magneto-optical trap with femtosecond laser radiation in the spectral range 760–820 nm has been investigated experimentally. It has been demonstrated that femtosecond laser radiation with a spectral width of 10 nm interacts with an atomic ensemble as a set of spectrally narrow modes and as an ionizing laser field simultaneously. The dynamics of trap loading in the presence of ionization by femtosecond radiation has been studied, and the 5D 5/2 level population produced by an additional weak laser field has been measured.  相似文献   

7.
. We report on the experimental and theoretical study of spectrum transformation and frequency blue-shift of femtosecond laser pulses with intensities up to 2×1016 W/cm2, propagating in glass capillary tubes under gas ionization. Monomode optical guiding with 45% transmission efficiency is demonstrated in a 100-μm-diameter, 20-cm length capillary. A broadening of the initial spectrum as much as several initial spectrum widths is achieved. Besides the broadening, the mean frequency of the output radiation in the spectrum experiences a blue-shift of up to several initial spectrum widths, caused by the non-stationary, non-linear process of gas ionization. Our numerical simulations, in the form of a simple one-dimensional model for the propagation of intense laser pulses in gas-filled capillaries, are in good qualitative agreement with the experimental results. These simulations show the possibility of significant compression of an output pulse in a simple compression scheme (e.g. a piece of silica glass with normal dispersion), which is very important for obtaining laser pulses with few optical cycles at the millijoule energy level. Received: 25 September 2001 / Revised version: 6 December 2001 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +7-8312/363-792, E-mail: dekart@ufp.appl.sci-nnov.ru  相似文献   

8.
The mode structure and spectral properties of supercontinuum emission generated by femtosecond pulses of Ti: sapphire laser radiation in microstructure fibers are studied. The long-wavelength (720–900 nm) and visible (400–600 nm) parts of supercontinuum emission are shown to be spatially separated in microstructure-fiber modes, which can be isolated with an appropriate spectral filtering. The spatial modes thus isolated in spectrally sliced supercontinuum emission possess a spatial quality sufficient for further efficient frequency conversion. The possibility of achieving a high spectral quality of supercontinuum emission is also demonstrated. We explore the ways to control the spectrum of supercontinuum emission by matching parameters of the pump pulse with the parameters of a microstructure fiber and by tuning the initial chirp of the pump pulse. The results of our studies show that supercontinua produced in microstructure fibers offer new approaches to designing a new generation of optical parametric amplifiers and broadband radiation sources for spectroscopic, metrological, and biomedical applications.  相似文献   

9.
A medium consisting of quartz with embedded active (amplifying) or passive (absorbing) impurities, i.e., quantum dots, is proposed for producing extremely short dissipative solitons on the basis of the effect of enhanced self-induced transparency. The calculations show that, in such a medium, the initial standard femtosecond pulses can be transformed into extremely short dissipative solitons with a peak intensity of ~1011 W/sm2, with a duration corresponding to the inverse frequency of transitions in impurities, and with the coherent spectral supercontinuum covering almost the entire transmission region of quartz.  相似文献   

10.
A repetitively pulsed chromium-forsterite laser system is created. High-power femtosecond light pulses are generated at the fundamental (1.24 μm) and second-harmonic (0.62 μm) wavelengths. Theoretical analysis is performed to optimize the output pulse energy. Laser pulses with a duration of 110 fs, an energy of 1 mJ, and a repetition rate of 1–50 Hz are generated. The intensity of the focused beam is greater than 1016 W/cm2. High-efficiency radiation conversion into the second harmonic is used to increase the energy contrast of the generated pulses. Original Text ? Astro, Ltd., 2006.  相似文献   

11.
The results of investigation of high harmonics of radiation of a Ti:sapphire laser propagating through a laser plasma generated on the surface of different targets are presented. For most of the targets, the intensity distribution of the high harmonics generated is found to form a plateaulike pattern similar to that observed in the case of gas jets. The generation of high harmonics (up to the 65th harmonic, λ = 12.24 nm) is caused by the interaction of femtosecond laser radiation with ions. The conversion efficiency in the plateau region varies from 10?7 to 8 × 10?5 depending on the target. The main restriction on the conversion efficiency and the peak intensity of the harmonics generated is caused by the self-defocusing of the femtosecond radiation due to free charge carriers formed as a result of tunnel ionization.  相似文献   

12.
Characteristic K α x rays arising when a metallic target is irradiated by femtosecond infrared pulses that are generated by a terawatt chromium-forsterite laser system (1240 nm, 90 mJ, 80 fs) are studied. The absolute yield (up to 3 × 108 photons/sr pulse) and the coefficient of the transformation of laser radiation to K α radiation (maximum value ≈0.03%) are measured for an iron target. The dependence of the radiation intensity on the angle of incidence of p polarized laser radiation is analyzed. The mechanisms of the production of fast electrons responsible for generating characteristic x rays are discussed.  相似文献   

13.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

14.
The formation of conical emission of supercontinuum during filamentation of femtosecond laser pulses with central wavelengths in a wide range is studied experimentally, numerically, and analytically. The frequency-angular intensity distribution of the spectral components of conical emission is determined by the interference of supercontinuum emission in a filament of a femtosecond laser pulse. The interference of supercontinuum emission has a general character, exists at different regimes of group velocity dispersion, gives rise to the fine spectral structure after the pulse splitting into subpulses and the formation of a distributed supercontinuum source in an extended filament, and causes the decomposition of the continuous spectrum of conical emission into many high-contrast maxima after pulse refocusing in the filament. In spectroscopic studies with a tunable femtosecond radiation source based on a TOPAS parametric amplifier, we used an original scheme with a wedge fused silica sample. Numerical simulations have been performed using a system of equations of nonlinear-optical interaction of laser radiation under conditions of diffraction, wave nonstationarity, and material dispersion in fused silica. The analytic study is based on the interference model of formation of conical emission by supercontinuum sources moving in a filament.  相似文献   

15.
We study a novel method to produce extremely short pulses of radiation in a resonant medium via induced transparency by means of adiabatic periodic modulation of atomic transition frequencies by far-off-resonant laser field, which causes linear Stark splitting of atomic energy levels resulting in partial transparency of an optically deep medium and drastic spectral modification of an incident resonant radiation. We find the regimes where the output spectrum corresponds to extremely short pulses and discuss several possible experimental realizations of generation of attosecond pulses in Li2+ ions and femtosecond pulses in atomic hydrogen with commercially available facilities.  相似文献   

16.
We demonstrate sub-100-fs resolution of a cross-correlation method for measuring the duration of soft-X-ray pulses. The method uses the ultra-fast increase in a singly charged ion population induced by optical-field ionization as a soft-X-ray -absorption switch. We measured the pulse duration of the 51st harmonic of a Ti:sapphire laser pulse using Kr gas as a soft-X-ray absorption medium and found it to be 60 fs assuming that the harmonic envelope is equal to a squared secant hyperbolic. This confirmed that our method achieves a shorter temporal resolution than the 100-fs pulse duration of the ionizing laser pulse. The temporal resolution obtained in this way is expected to be from one-third to one-half the duration of the ionizing laser pulse, according to our calculation of the time-evolving population of the Kr+ ions. The experimental demonstration and calculation show that methods based on optical-field-induced ionization are promising for femtosecond temporal characterization of an ultra-short pulse in the soft-X-ray region. PACS 42.50.Hz; 42.65.Ky; 32.80.Rm; 06.60.Jn  相似文献   

17.
It is proposed to use a high rate of collisional ionization in a superdense laser plasma to generate incoherent femtosecond X-ray pulses. The calculations indicate that the use of picosecond laser pulses with a contrast of about 1010 will allow the generation of an X-ray pulse with a duration of about 10 fs. The adequacy of the proposed model of the excitation of linear X-ray radiation from the plasma has been tested in the experiments with a picosecond laser of a moderately high contrast.  相似文献   

18.
研究了超短脉冲强激光在大气中传输产生电离通道后辐射的三次谐波强度随激光偏振的变化.此外,还研究了产生的白光辐射在短波长上的有规律的谱调制,分析了白光谱调制的产生机理. 关键词: 超短脉冲激光 大气通道 超连续辐射 三次谐波  相似文献   

19.
A method based on an original electron microscope created for investigating photoelectron beams is presented. It ensures a nanometer spatial resolution and picosecond time resolution. Electrons appearing when a metal needle is irradiated by femtosecond laser pulses are transmitted through a dielectric microcapillary and are subjected to a ponderomotive potential created by femtosecond laser radiation focused near the capillary tip. The position-sensitive detection scheme allows for the detection of the spatial profile of a photo-electron beam with a magnification of K ≅ 4 × 104. The time structure of the photoelectron beam is visualized by scanning the delay time between laser pulses irradiating the needle and a laser pulse focused near the capillary tip.  相似文献   

20.
The characteristics of X rays of a laser plasma generated in the interaction of a femtosecond pulse with solid targets in an air atmosphere have been investigated. It has been shown that the mechanism for the generation of X rays in the interaction of short intense laser pulses with solid targets in a gas atmosphere is attributed to the generation of fast electrons in the region of the filamentation of a laser pulse. It has been proven experimentally that under such conditions, the solid target irradiated by laser radiation of even a low density of about 1015 W/cm2 very efficiently emits ∼10-keV photons. It has been shown theoretically that the maximum energy of accelerated electrons can reach ɛmax ∼ 100–200 keV under these conditions. This means that the proposed method can provide characteristic radiation with the energy of photons much higher than 10 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号