首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a class of pseudo monotone semiflows, which only enjoy some weak monotonicity properties and are defined on product-ordered topological spaces. Under certain conditions, several convergence principles are established for each precompact orbit of such a class of semiflows to tend to an equilibrium, which improve and extend some corresponding results already known. Some applications to delay differential equations are presented.  相似文献   

2.
The theory of spreading speeds and traveling waves for monotone autonomous semiflows is extended to periodic semiflows in the monostable case. Then these abstract results are applied to a periodic system modeling man-environment-man epidemics, a periodic time-delayed and diffusive equation, and a periodic reaction-diffusion equation on a cylinder.  相似文献   

3.
4.
We study the existence of traveling wave fronts for a reaction-diffusion equation with spatio-temporal delays and small parameters. The equation reduces to a generalized Fisher equation if small parameters are zero. We present two results. In the first one, we deal with the equation with very general kernels and show the persistence of Fisher wave fronts for all sufficiently small parameters. In the second one, we deal with some particular kernels, with which the nonlocal equation can be reduced to a system of singularly perturbed ODEs, and we are then able to apply the geometric singular perturbation theory and phase plane arguments to this system to show the existence of the minimal wave speed, the existence of a continuum of wave fronts, and the global uniqueness of the physical wave front with each wave speed.  相似文献   

5.
We establish the existence of a continuous family of fast positive wavefronts u(t,x)=?(x+ct), ?(−)=0, ?(+)=κ, for the non-local delayed reaction-diffusion equation . Here 0 and κ>0 are fixed points of gC2(R+,R+) and the non-negative K is such that is finite for every real λ. We also prove that the fast wavefronts are non-monotone if .  相似文献   

6.
This paper is concerned with the monotonicity and uniqueness of traveling waves for a reaction-diffusion model with quiescent stage. We first obtain the exponential decay rate of wave profiles, and then we show that any profile is strictly monotone by using the strong comparison principle. Furthermore, we prove the uniqueness (up to translation) of all traveling waves including even the waves with minimal speed.  相似文献   

7.
In this paper, we study a class of time-delayed reaction-diffusion equation with local nonlinearity for the birth rate. For all wavefronts with the speed c>c, where c>0 is the critical wave speed, we prove that these wavefronts are asymptotically stable, when the initial perturbation around the traveling waves decays exponentially as x→−∞, but the initial perturbation can be arbitrarily large in other locations. This essentially improves the stability results obtained by Mei, So, Li and Shen [M. Mei, J.W.-H. So, M.Y. Li, S.S.P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 579-594] for the speed with small initial perturbation and by Lin and Mei [C.-K. Lin, M. Mei, On travelling wavefronts of the Nicholson's blowflies equations with diffusion, submitted for publication] for c>c with sufficiently small delay time r≈0. The approach adopted in this paper is the technical weighted energy method used in [M. Mei, J.W.-H. So, M.Y. Li, S.S.P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 579-594], but inspired by Gourley [S.A. Gourley, Linear stability of travelling fronts in an age-structured reaction-diffusion population model, Quart. J. Mech. Appl. Math. 58 (2005) 257-268] and based on the property of the critical wavefronts, the weight function is carefully selected and it plays a key role in proving the stability for any c>c and for an arbitrary time-delay r>0.  相似文献   

8.
This is the second part of a series of study on the stability of traveling wavefronts of reaction-diffusion equations with time delays. In this paper we will consider a nonlocal time-delayed reaction-diffusion equation. When the initial perturbation around the traveling wave decays exponentially as x→−∞ (but the initial perturbation can be arbitrarily large in other locations), we prove the asymptotic stability of all traveling waves for the reaction-diffusion equation, including even the slower waves whose speed are close to the critical speed. This essentially improves the previous stability results by Mei and So [M. Mei, J.W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 551-568] for the speed with a small initial perturbation. The approach we use here is the weighted energy method, but the weight function is more tricky to construct due to the property of the critical wavefront, and the difficulty arising from the nonlocal nonlinearity is also overcome. Finally, by using the Crank-Nicholson scheme, we present some numerical results which confirm our theoretical study.  相似文献   

9.
We consider a nonlinear reaction-diffusion equation on the whole space Rd. We prove the well-posedness of the corresponding Cauchy problem in a general functional setting, namely, when the initial datum is uniformly locally bounded in L2 only. Then we adapt the short trajectory method to establish the existence of the global attractor and, if d?3, we find an upper bound of its Kolmogorov's ε-entropy.  相似文献   

10.
We develop a perturbation argument based on existing results on asymptotic autonomous systems and the Fredholm alternative theory that yields the persistence of traveling wavefronts for reaction-diffusion equations with nonlocal and delayed nonlinearities, when the time lag is relatively small. This persistence result holds when the nonlinearity of the corresponding ordinary reaction-diffusion system is either monostable or bistable. We then illustrate this general result using five different models from population biology, epidemiology and bio-reactors.  相似文献   

11.
12.
To capture the impact of spatial heterogeneity of environment and movement of individuals on the persistence and extinction of a disease, Allen et al. in [L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A 21 (1) (2008) 1-20] proposed a spatial SIS (susceptible-infected-susceptible) reaction-diffusion model, and studied the existence, uniqueness and particularly the asymptotic behavior of the endemic equilibrium as the diffusion rate of the susceptible individuals goes to zero in the case where a so-called low-risk subhabitat is created. In this work, we shall provide further understanding of the impacts of large and small diffusion rates of the susceptible and infected population on the persistence and extinction of the disease, which leads us to determine the asymptotic behaviors of the endemic equilibrium when the diffusion rate of either the susceptible or infected population approaches to infinity or zero in the remaining cases. Consequently, our results reveal that, in order to eliminate the infected population at least in low-risk area, it is necessary that one will have to create a low-risk subhabitat and reduce at least one of the diffusion rates to zero. In this case, our results also show that different strategies of controlling the diffusion rates of individuals may lead to very different spatial distributions of the population; moreover, once the spatial environment is modified to include a low-risk subhabitat, the optimal strategy of eradicating the epidemic disease is to restrict the diffusion rate of the susceptible individuals rather than that of the infected ones.  相似文献   

13.
We prove the existence of a continuous family of positive and generally nonmonotone travelling fronts for delayed reaction-diffusion equations , when gC2(R+,R+) has exactly two fixed points: x1=0 and x2=K>0. Recently, nonmonotonic waves were observed in numerical simulations by various authors. Here, for a wide range of parameters, we explain why such waves appear naturally as the delay h increases. For the case of g with negative Schwarzian, our conditions are rather optimal; we observe that the well known Mackey-Glass-type equations with diffusion fall within this subclass of (∗). As an example, we consider the diffusive Nicholson's blowflies equation.  相似文献   

14.
The aim of this paper is to study the existence and the geometry of positive bounded wave solutions to a non-local delayed reaction-diffusion equation of the monostable type.  相似文献   

15.
16.
This paper is concerned with the existence and asymptotic behavior of solutions of a nonlocal dispersal equation. By means of super-subsolution method and monotone iteration, we first study the existence and asymptotic behavior of solutions for a general nonlocal dispersal equation. Then, we apply these results to our equation and show that the nonnegative solution is unique, and the behavior of this solution depends on parameter λ in equation. For λλ1(Ω), the solution decays to zero as t; while for λ>λ1(Ω), the solution converges to the unique positive stationary solution as t. In addition, we show that the solution blows up under some conditions.  相似文献   

17.
We prove that some conditions are sufficient for regions to be invariant with respect to strongly coupled quasilinear parabolic systems indivergence form. This result can be applied to certain two population systems where we can compute the boundaries of the invariant regions by solving ordinary differential equations. Under simple conditions on the parameters we get bounded invariant regions.  相似文献   

18.
In this paper, we investigate the spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, which is motivated by an age-structured population model with distributed maturation delay. The spreading speed c*, the existence of traveling waves with the wave speed c?c*, and the nonexistence of traveling waves with c<c* are obtained. It turns out that the spreading speed coincides with the minimal wave speed for monotone traveling waves.  相似文献   

19.
This paper is concerned with a class of essentially strongly order-preserving semiflows, which are defined on an ordered metric space and are generalizations of strongly order-preserving semiflows. For essentially strongly order-preserving semiflows, we prove several principles, which are analogues of the nonordering principle for limit sets, the limit set dichtomy and the sequential limit set trichotomy for strongly order-preserving semiflows. Then, under certain compactness hypotheses, we obtain some results on convergence, quasiconvergence and stability in essentially strongly order-preserving semiflows. Finally, some applications are made to quasimonotone systems of delay differential equations and reaction-diffusion equations with delay, and the main advantages of our results over the classical ones are that we do not require the delicate choice of state space and the technical ignition assumption.  相似文献   

20.
We consider a reaction-diffusion system with general time-delayed growth rate and kernel functions. The existence and stability of the positive spatially nonhomogeneous steady-state solution are obtained. Moreover, taking minimal time delay τ as the bifurcation parameter, Hopf bifurcation near the steady-state solution is proved to occur at a critical value τ=τ0. Especially, the Hopf bifurcation is forward and the bifurcated periodic solutions are stable on the center manifold. The general results are applied to competitive and cooperative systems with weak or strong kernel function respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号