首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

2.
A series of 2,2′-bipyridines featuring fluorinated alkyl groups [(CH2)3(CF2)xCF3: x = 0, (1); 5, (2); 7, (3); 9 (4)] appended in the 4 and 4′ positions have been prepared. 1-4 were characterized by spectroscopy and physical methods including partition coefficient (biphase: perfluoromethylcyclohexane/toluene) and cyclic voltammetry (THF). Ab-initio calculations of vertical ionization potentials (VIPs) for 1-4 confirm the insulating role of the methylene spacers as the electrochemical reduction potentials of 1-4 are almost identical to that of 2,2′-bipyridine. Calculations for (CH2)nCF3 derivatives (n = 0-10) describe a limit for impact of the CF3 group through 9-10 methylenes. From both physical and theoretical data fluorinated alkyl groups of the formula (CH2)3(CF2)xCF3 [x = 0-9] are inductively equivalent to a hydrogen substituent when appended to the bipyridine moiety.  相似文献   

3.
4.
Alkaline condensation reactions of 2,4,6-trimethyl-1,3,5-triazine (1) and substituted benzaldehydes (2a-n) yield 2,4,6-tristyryl-1,3,5-triazines (3a-n). A sufficient number and length of the alkoxy chains at the benzene rings provide liquid crystalline phases Colhd. A special structure was found for compound 3i with 9 hexyloxy chains; it exists in the solid state in a helical columnar arrangement, which is transformed by heating to a hexagonal columnar mesophase. Irradiation of the mesophases of 3i-3m leads to partial cyclodimerization reactions, which cause different textures and lower the clearing points. The border line between the irradiated and the unirradiated zones is preserved in the solid and the liquid crystalline temperature range but also over a surprisingly long period in the molten state. A detailed study of this imaging technique was performed for the LC phase of 3i.  相似文献   

5.
Bismuth(III) bis(trifluoromethanesulfonyl)amide (Bi(NTf2)3, 3) has been prepared from the reaction of protiodemetallation of tri-p-tolylbismuth by a stoichiometric amount of bis(trifluoromethanesulfonyl)amine (1). The intermediates BiPh3−n(NTf2)n (n=2 (4), 1 (5)) resulting from the reaction of 1 with triphenylbismuth have also been isolated. The amide 3 was able to catalyze the benzoylation and the benzenesulfonylation of toluene.  相似文献   

6.
Yukihiro Motoyama 《Tetrahedron》2005,61(43):10216-10226
Atom-transfer radical cyclization (ATRC) and addition (ATRA) catalyzed by a coordinatively unsaturated diruthenium amidinate complex 4, [(η5-C5Me5)Ru(μ2-i-PrNC(Me)Ni-Pr)Ru(η5-C5Me5)]+, are investigated, and their features are compared with those of atom-transfer radical polymerization (ATRP). As an example of ATRC, a cationic diruthenium amidinate 4 is found to exhibit excellent catalytic reactivity for the cyclization of N-allyl α-halogenated acetamides including an alkaloid skeleton at ambient temperature. A catalytic species generated in situ from a halide complex, (η5-C5Me5)Ru(μ2-i-PrNC(Me)Ni-Pr)Ru(η5-C5Me5)(X) [X=Cl, Br] and sodium salts of weakly coordinating anions such as NaPF6 and NaBPh4 also shows high catalytic activity; this actually provides a solution for a problematic instability of 4 as the practical catalyst. The in situ-generated catalyst species 4 is also active towards the intermolecular ATRA of α,α,γ-trichlorinated γ-lactam with alkenes at rt to afford the corresponding α-alkylated γ-lactams in moderate yields. Examination of ATRP of methyl methacrylate (MMA) showed that both the isolated 4 [Y=PF6] and in situ-generated 4 [Y=PF6] are effective for the polymerization of MMA in the presence of 2-bromoisobutylate as the initiator. Use of the isolated catalyst results in controlled polymerization at initial stage of the reaction; in contrast, the polymerization with in situ-generated catalyst produces poly(MMA) with wide molecular weight distribution. The isolated catalyst 4 is powerful for the activation of a C-Br bond of macromolecule initiators; BrCMe2CO2[O(CH2)4]n-n-Bu (Mn=3800; Mw/Mn=1.2) initiated ATRP of MMA even at 25 °C to afford the poly(THF)-poly(MMA) block copolymer of Mn=26,000 and Mw/Mn=1.2 with the aid of 4. The roles of the coordinatively unsaturated ruthenium species for these reactions are discussed.  相似文献   

7.
The reaction of primary amines RNH2 (R: Me, Et, iPr, tBu and Ph) with 1,2-dibromoethane gave N,N′-disubstituted ethylenediamines R-NH-CH2CH2-NH-R (1) in yields ranging from 10% (1a; R=Me) to 70% (1d, R=tBu; 1e, R=Ph). Piperazines and N-substituted polyethyleneimines were identified (1H NMR, 13C NMR and EI-MS) as side products of the reaction and isolated by fractional distillation. The piperazines 2 are formed in yields of 3-10% and can be separated from the diamines 1 in all cases, except for R=Me and Ph. The polyamine homologues RNH-[CH2CH2NR]n-H (3-5) were isolated in yields ranging from 0.1% (n=4, R=iPr) to 14% (n=2, R=iPr). The yields of 1 increase with the size of the substituent R, no obvious trend exists for the yields of the side products.  相似文献   

8.
The five new silanes C5Me3RSiMenCl3 − n (n = 3, R = i-Pr (5); n = 2, R = i-Pr (6); n = 2, R = s-Bu (7); n = 2, R = cyclohexyl (8); and n = 3, R = t-Bu (9)) were synthesized by reaction of 1-alkyl-2,3,4-trimethylcyclopentadienyl lithium salts with appropriate chlorosilane and characterized by NMR, MS, and IR spectra. At elevated temperatures (250-360 K), all the silanes undergo a non-degenerate sigmatropic silyl rearrangement, which generates non-equivalent structures a and b. The presence of minor structure c was observed in compounds 5 and 7 only. The Diels-Alder cycloaddition of 5 with strong dienophiles tetracyanoethylene (TCNE), and dimethylacetylenedicarboxylate (DMAD) provides compounds 10 and 11, which confirmed isomers a and b, respectively. The free energy of activation of b → a isomerization for compounds 5-8 evaluated from variable temperature NMR spectra show only marginal influence of group R on the 1,2-silyl shift rate. Moreover, in compounds 5 and 7, the process b → a was found significantly faster than b → c process in the above-mentioned temperature range.  相似文献   

9.
A series of organotin(IV) complexes with 2,5-dimercapto-1, 3, 4-thiodiazole (HHdmt) of the type (RnSnClm)2(dmt) (m=0, n=3, R=Ph 1, PhCH22, n-Bu 3; m=1, n=2, R=Ph 4) and [R2Sn(dmt) · L]n (L=0.5C6H6, R=CH35; L=0, n=5, R=n-Bu 6) have been synthesized. All complexes 1-6 were characterized by elemental analysis, IR, 1H and 13C NMR spectra. And except for 3, complexes 1, 2, 4, 5 and 6 were also determined by X-ray crystallography. The tin atoms of complexes 1, 2, 3 and 4 are all five-coordinated. The geometries at tin atoms of 1, 2, 3 and 4 are distorted trigonal bipyramidal. The tin atoms of complexes 5 and 6 are six-coordinated and their geometries are distorted octahedral.  相似文献   

10.
The P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 at room temperature has been carefully re-investigated by a combined transmission electron microscopy and neutron powder diffraction study. It is shown that the poor fit of this P63 (a=2ap, b=2bp, c=cp) structure model for BaAl2O4 to neutron powder diffraction data is primarily due to the failure to take into account coherent scattering between different domains related by enantiomorphic twinning of the P6322 parent sub-structure. Fast Fourier transformation of [0 0 1] lattice images from small localized real space regions (∼10 nm in diameter) are used to show that the P63 (a=2ap, b=2bp, c=cp) crystal structure reported for BaAl2O4 is not correct on the local scale. The correct local symmetry of the very small nano-domains is most likely orthorhombic or monoclinic.  相似文献   

11.
Three highly fluorinated bipyridine derivatives (4,4′-bis(RfCH2OCH2)-2,2′-bpy) {Rf=HCF2(CF2)7 (1a), n-C8F17 (1b), n-C10F21 (1c)} have been synthesized using 4,4′-bis(BrCH2)-2,2′-bpy and the corresponding fluorinated alkoxides. The fluorine contents of ligands 1a-c are 58.3, 59.8, and 62.3%, respectively. Despite its high fluorine content, the ligand 1a with a -CF2H polar terminal group is more soluble in organic solvents. The ligand 1b is a white solid and is still moderately soluble in CH2Cl2. The ligand 1c has a high fluorophilicity, the partition ratio being 42:1 for the n-C8F18/CH2Cl2 system. The reaction of ligands 1a-c with [PdCl2(CH3CN)2] results in the novel Pd complexes [PdCl2(4,4′-bis-(RfCH2OCH2)-2,2′-bpy)] where Rf=HCF2(CF2)7 (2a), n-C8F17 (2b), n-C10F21 (2c), respectively. The Pd complex 2b is a pale yellow solid, and has been tested unsatisfactorily for FBC. Insoluble in organic solvents, the Pd complex 2c dissolves only in fluorinated solvents, for instance FC77, which is mainly n-C8F18. The novel Pd complex 2c has been tested as a catalyst in Heck reactions under a fluorous biphasic catalysis condition. It was found that the Pd complex 2c, after an easy separation, keeps its catalytic activity (>90% yield), even after seven runs. The TGA studies indicate that the Pd complexes 2a-c are stable up to 330 °C.  相似文献   

12.
The synthesis and full characterization of a number of amino acid and dipeptide derivatives with sulfur-containing side chains derived from ferrocene carboxylic acid and ferrocene-1,1′-dicarboxylic acid is presented. In particular, compounds Fc-CO-(Aaa)n-OMe (4) and Fe[C5H4-CO-(Aaa)n-OMe]2 (3) with (Aaa)n = Cys(Bzl) (a), Cys(Bzl)-Cys(Bzl) (b), Cys(p-OMe-Bzl) (c), Cys(p-OMe-Bzl)-Cys(p-OMe-Bzl) (d), Met (e), and Met-Met (f) were prepared. Also, the free acid derivatives Fe[C5H4-CO-Met-OH]2 (6e) and Fc-CO-Met-OH (7e) were prepared and characterized. The solid state structures of 3a, 4b, and 4e were determined by single crystal X-ray diffraction. Compound 3a shows a 1,3′ substitution pattern on the Cp rings in the solid state. Structures in solution were determined by NMR, IR and CD spectroscopy, with particular emphasis on the question of hydrogen bonding and helical chirality of the metallocene. As an example, the full assignment for the Cp signals in the disubstituted derivative 3a was achieved by simulation of the 1H NMR signals from the cyclopentadienyl ring in combination with 2D-NOESY spectra. In solution, 3a has the known 1,2′ substitution pattern, which is stabilized by intramolecular hydrogen bonds.  相似文献   

13.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

14.
15.
The use as coligands of the nicotinamide (nia) and isonicotinamide (inia) molecules in the complex formation between copper(II) and phenylmalonate [Phmal = dianion of phenylmalonic acid] yielded the compounds of formula [Cu(inia)(Phmal)(H2O)] (1) and [Cu(inia)(Phmal)(H2O)]n (2). Although single crystals of 1 of appropriate size were grown, their unresolved twinning and space group ambiguity prevented a satisfactory X-ray structure determination. The crystal structure 2 consists of corrugated layers of copper(II) ions with intralayer carboxylate-phenylmalonate bridges in the anti-syn (equatorial-apical) coordination mode. A water molecule and the isonicotinamide group are coordinated to the copper atom in trans position being located above and below each layer. The Phmal ligand adopts the bidentate/monodentate coordination mode with the bidentate coordination involving one equatorial and one apical bonds, a feature which is unprecedented for the copper(II) complexes with alkyl(aryl)substituted-malonate derivatives. Intra- and interlayer H-bonds together with intralayer π-π type interactions between the phenyl and inia aromatic groups contribute to the stabilization of the three-dimensional supramolecular structure. Magnetic susceptibility measurements of complexes 1 and 2 in the temperature range 1.9-300 K are quasi identical and they correspond to a very weak ferromagnetic interaction between the copper(II) ions [J = +0.091(2) cm−1 (1) and +0.097(2) cm−1 (2) through the spin Hamiltonian for an isotropic square grid of interacting spin doublets which is defined as H = −JΣiSi · Si+1]. The strong similarity in the magnetic properties of 1 and 2 allow us to conclude that although they are not isostructural species, their structures have to be very close.  相似文献   

16.
Three monomeric germatranes, 1-isopropoxy-3,3,7,7,10,10-hexamethyl-2,8,9-trioxa-5-aza-1-germatricyclo[3.3.3.01,5]undecane (1), 1-isopropoxy-3,3,7,7-tetramethyl-2,8,9-trioxa-5-aza-1-germatricyclo[3.3.3.01,5]undecane (2), and 1-isopropoxy-3,3-dimethyl-2,8,9-trioxa-5-aza-1-germatricyclo[3.3.3.01,5]undecane (3) have been synthesized by the reaction of Ge(O-i-Pr)4 in refluxing toluene with corresponding triethanolamines, (HOCH2CH2)nN(CH2CMe2OH)3−n (n = 0, L1H3; n = 1, L2H3; n = 2, L3H3), where the number of CMe2 groups adjacent to a OH functionality varied from 3 (L1H3) to 2 (L2H3), and to 1 (L3H3). These germatranes 1-3 have been characterized by solution 1H and 13C{1H} NMR and the solid state structure of 2 has been determined by single crystal X-ray diffraction.  相似文献   

17.
The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me3SiO)RR′SiLi (2a: R = Et, 2b: R = iPr, 2c: R = 2,4,6-Me3C6H2 (Mes); 2a-c: R′ = Ph; 2d: R = R′ = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-d) in the presence of excess lithium in a mixture of THF/diethyl ether/n-pentane at −110 °C was investigated.The trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a: R = Et, 1b: R = iPr, 1c: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me3SiO)RPhSiLi (2a-c). These siloxysilyllithiums 2 couple partially with more trimethylsiloxychlorosilanes 1 to produce the siloxydisilanes (Me3SiO)RPhSi-SiPhR(OSiMe3) (Ia-c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me3SiO)RPhSi-RPhSiLi (3a-c). The siloxydisilanes I are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2). In the case of the two trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a: R = Et, 3b: R = iPr) a reaction with more trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a, 1b) takes place under formation of siloxytrisilanes (Me3SiO)RPhSi-RPhSi-SiPhR(OSiMe3) (IIa: R = Et, IIb: R = iPr) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2a, 2b) and the trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a, 3b). The dimesityl-trimethylsiloxy-silyllithium (Me3SiO)Mes2SiLi (2d) was obtained directly by reaction of the trimethylsiloxychlorosilane (Me3SiO)Mes2SiCl (1d) and lithium without formation of the siloxydisilane intermediate. Both silyllithium compounds 2 and 3 were trapped with HMe2SiCl giving the products (Me3SiO)RR′Si-SiMe2H and (Me3SiO)RPhSi-RPhSi-SiMe2H.  相似文献   

18.
A total of 18 compounds 1-6 derived from triphenylamine as core group were prepared and characterized, and their mesomorphic properties were also investigated. Compounds 1-4 and 5,6 were prepared from p,p′,p″-triformyltriphenylamine and p,p′-diformyltriphenylamine with appropriate alkoxyphenylamines. The phase behavior of these mesogenic compounds was characterized and studied by differential scanning calorimetry, polarized optical microscopy, and powder XRD diffraction. Compounds 1-3 exhibited columnar mesophase, however, compounds 4-6 were nonmesogenic. The mesophases observed in compounds 1-3 were found to be side dependent. Compounds 1a, 2a, and 3a appended with one, two, or three side chains exhibited lamellar columnar (ColL) phases, and compounds 2b and 3b with four or six side chains formed hexagonal columnar (Colh) phases. The formation of the mesophases, lamellar or columnar mesophases, was probably induced by H-bonding formed between -CH2NH groups. The oxidation process determined by cyclic voltammetry showed two redox waves, one appeared at 220-255 mV and the other one at 503-677 mV, which gave energy to HOMOs range of 5.02-5.36 eV. The fluorescent properties of the compounds were examined. All λmax peaks of the absorption and photoluminescence spectra of compounds occurred at ca. 307-392 nm and 368-456 nm, respectively. Compound 4a has a larger red shift due to a better conjugation linked by CC double bonds instead of -CH2NH in other compounds.  相似文献   

19.
The reaction of bromoalkanes (R–Br; (3), R=CnH2n+1, n=4 (a), 8 (b), 12 (c),18 (d)) and bromobenzyl derivatives (R′–Br; (4), R′=CH2C6H2(CH3)3-2,4,6 (a); CH2C6H(CH3)4-2,3,5,6 (b); CH2C6(CH3)5 (c)) with 1H-imidazo[4,5-f][1,10]-phenanthroline (IP)(L2) gave the corresponding 1-R-imidazo[4,5-f][1,10]-phenanthroline (IPR)(L3ad) and 1-R′-imidazo[4,5-f][1,10]-phenanthroline(IPR')(L4ac) ligands, respectively. Treatment of L3ad and L4ad with [Ru(p-cymene)Cl2]2 led to the formation of [Ru(p-cymene)(IPR)Cl]Cl (RuL3ad) and [Ru(p-cymene)(IPR′)Cl]Cl (RuL4ac). New ruthenium(II) complexes RuL3ad and RuL4ac were characterized by elemental analysis, FTIR, UV–visible and NMR spectroscopy. In order to understand effects of these changes on the N-substituent of imidazol on IP and how they translate to catalytic activity, these new RuL2, RuL3ad and RuL4ac were applied in the transfer hydrogenation of ketones by 2-propanol in presence of potassium hydroxide. The activities of the catalysts were monitored by NMR and GC analysis.  相似文献   

20.
A series of organotin (IV) complexes with 6-amino-1,3,5-triazine-2,4-dithiol of the type [(RnSnCl4−n)2 (C3H2N4S2)] (n = 3: R = Me 1, n-Bu 2, PhCH23, Ph 4; n = 2: R = Me 5, n-Bu 6, PhCH27, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental analysis, IR, 1H and 13C NMR spectra. Among them complexes 1, 4, 5 and 8 have also been characterized by X-ray crystallography diffraction analyses, which revealed that the tin atoms of complexes 1, 4, 5 and 8 are all five-coordinated with distorted trigonal bipyramid geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号