首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kadomtsev-Petviashvili (KP) equations arise genetically in modelling nonlinear wave propagation for primarily unidirectional long waves of small amplitude with weak transverse dependence. In the case when transverse dispersion is positive (such as for water waves with large surface tension) we investigate the existence of transversely modulated travelling waves near one-dimensional solitary waves. Using bifurcation theory we show the existence of a unique branch of periodically modulated solitary waves. Then, we briefly discuss the case when the transverse dispersion is negative (such as for water waves with zero surface tension).  相似文献   

2.
带色散项的Degasperis-Procesi方程的孤立尖波解   总被引:2,自引:0,他引:2  
用动力系统的定性分析理论研究了带有色散项的Degasperis-Procesi方程的孤立尖波解.在一定的参数条件下,利用Degasperis-Procesi方程对应行波系统的相图分支从两种不同方式给出了孤立尖波解的表达式.  相似文献   

3.
Bifurcation method of dynamical systems is employed to investigate bifurcation of solitary waves in the nonlinear dispersive Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equation. Numbers of solitary waves are given for each parameter condition. Under some parameter conditions, exact solitary wave solutions are obtained.  相似文献   

4.
Electron magnetohydrodynamics equations are derived with allowance for nonlinearity, dispersion, and dissipation caused by friction between the ions and electrons. These equations are transformed into a form convenient for the construction of a numerical scheme. The interaction of codirectional and oppositely directed magnetosonic solitary waves with no dissipation is computed. In the first case, the solitary waves are found to behave as solitons (i.e., their amplitudes after the interaction remain the same), while, in the second case, waves are emitted that lead to decreased amplitudes. The decay of a solitary wave due to dissipation is computed. In the case of weak dissipation, the solution is similar to that of the Riemann problem with a structure combining a discontinuity and a solitary wave. The decay of a solitary wave due to dispersion is also computed, in which case the solution can also be interpreted as one with a discontinuity. The decay of a solitary wave caused by the combined effect of dissipation and dispersion is analyzed.  相似文献   

5.
The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg–de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned.  相似文献   

6.
Bifurcation method of dynamical systems is employed to investigate bifurcation of solitary waves in the generalized (2 + 1) dimensional Boussinesq equation. Numbers of solitary waves are given for each parameter condition. Under some parameter conditions, exact solitary wave solutions are obtained.  相似文献   

7.
The linear dispersion relation and a modified variable coefficients Korteweg–de Vries (MKdV) equation governing the three-dimensional dust acoustic solitary waves are obtained in inhomogeneous dusty plasmas comprised of negatively charged dust grains of equal radii, Boltzmann distributed electrons and nonthermally distributed ions. The numerical results show that the inhomogeneity, the nonthermal ions, the external magnetic field and the collision have strong influence on the frequency and the nonlinear properties of dust acoustic solitary waves and both dust acoustic solitary holes (soliton with a density dip) and positive solitons (soliton with a density hump) are excited.  相似文献   

8.
The problem of orbital stability of smooth solitary waves in the generalized Korteweg–de-Vries equation with combined dispersion is considered. The results show that the smooth solitary waves are stable for any speed of wave propagation.  相似文献   

9.
10.
We investigate the eigenvalue problem obtained from linearizing the Green‐Naghdi equations about solitary wave solutions. Unlike weakly nonlinear water wave models, the physical system considered here has nonlinearity in its highest derivative term. This results in more detailed asymptotic analysis of the eigenvalue problem in the presence of a large parameter. Combining the technique of singular perturbation with the Evans function, we show that for solitary waves of small amplitude, the problem has no eigenvalues of positive real part and the Evans function is nonvanishing everywhere except the origin. This fact then leads to the linear stability of these solitary waves. © 2001 John Wiley & Sons, Inc.  相似文献   

11.
In this paper, coexistence and simplified formulations of the solitary waves of the cubic–quintic non-linear Schrödinger equation (CQNLS) are investigated by analyzing the steady bifurcation and the energy integral of the conservative dynamical system satisfied by the wave packet. It is found that the bright solitary waves can coexist with kinks and anti-kinks in a range of the bifurcation control parameter. There exists a critical parameter value at which the dark solitary waves are distinguished from the bright solitary waves, kinks and anti-kinks. All of the simplified solitary wave solutions, kinks and anti-kinks are obtained by using our previously developed approximate method.  相似文献   

12.
Wave propagation in a generalized microstructure PDE, under the Mindlin relations, is considered. Limited analytic results exist for the occurrence of one family of solitary wave solutions of these equations. Since solitary wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves, we find a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The new family of solutions occur in regions of parameter space distinct from the known solitary wave solutions and are thus entirely new. Directions for future work are also mentioned.  相似文献   

13.
A model equation governing the primitive dynamics of wave packets near an extremum of the linear dispersion relation at finite wavenumber is derived. In two spatial dimensions, we include the effects of weak variation of the wave in the direction transverse to the direction of propagation. The resulting equation is contrasted with the Kadomtsev–Petviashvilli and Nonlinear Schrödinger (NLS) equations. The model is derived as an approximation to the equations for deep water gravity-capillary waves, but has wider applications. Both line solitary waves and solitary waves which decay in both the transverse and propagating directions—lump solitary waves—are computed. The stability of these waves is investigated and their dynamics are studied via numerical time evolution of the equation.  相似文献   

14.
Exact solutions of nonlinear generalizations of the wave equation are constructed. In some cases these solutions are solitary waves or solitions. Thus, by explicit construction solitons or solitary waves are shown to exist in dispersionless systems. In contrast to previous solitary wave solutions, these solutions are limiting cases of solutions of nonlinear partial differential equations with dispersion.  相似文献   

15.
Stationary solutions of reversible evolutionary equations of mechanics with higher derivatives are analysed. A two-dimensional graphical method for investigating the solutions of systems of ordinary differential equations is described, which enables one to find special types of solutions: periodic waves, solitary waves and the structures of discontinuities. At the same time, solitary waves can be obtained by taking the limit of sequences of periodic waves and the structures of discontinuities obtained by taking the limit of sequences of solitary waves. This general approach has enabled the existence of all earlier predicted structures to be verified has enabled new types of structures (three-wave structures) to be revealed and has enabled all the necessary conditions at the discontinuities to be found. All the previously known types of solitary waves are found and new types of solitary waves are revealed (generalized ordinary and 1:1 multisolitons). Methods of finding generalized solitary waves, including those with a finite amplitude of the periodic component, are determined. Examples of the solution of the following problems are given for a fourth-order system: generalized solitary waves as the limiting solutions of two-wave resonance solutions, generalized solitary waves and the structure of a discontinuity with three waves, a 1:1 soliton and the structure of a discontinuity with a single radiated wave, a solitary wave with fixed propagation velocity, and the structure of a discontinuity in the form of a kink with radiation. A generalized 1:1 soliton and the structure of a discontinuity with two radiated waves is considered in the case of sixth-order systems. The discussion is mainly based on the example of travelling waves described by the generalized Korteweg-de Vries equations. Other models with complex dispersion (a plasma and a stratified fluid) are also considered.  相似文献   

16.
Considered herein is the Ostrovsky equation which is widely used to describe the effect of rotation on the surface and internal solitary waves in shallow water or the capillary waves in a plasma. It is shown that the solitary-wave solutions are orbitally stable for certain wave speeds.

  相似文献   


17.
The Euler equations for water waves in any depth have been shown to have solitary wave solutions when the effect of surface tension is included. This paper proposes three quadratic model equations for these types of waves in infinite depth with a two-dimensional fluid domain. One model is derived directly from the Euler equations. Two further simpler models are proposed, both having the full gravity-capillary dispersion relation, but preserving exactly either a quadratic energy or a momentum. Solitary wavepacket waves are calculated for each model. Each model supports the elevation and depression waves known to exist in the Euler equations. The stability of these waves is discussed, as is the dynamics resulting from instabilities and solitary wave collisions.  相似文献   

18.
In this paper, solitary waves and periodic waves for Generalized Drinfeld–Sokolov equations are studied, by using the theory of dynamical systems. Bifurcation parameter sets are shown. Under given parameter conditions, explicit formulas of solitary wave, kink (anti-kink) wave and periodic wave solutions are obtained.  相似文献   

19.
This paper presents specific features of solitary wave dynamics within the framework of the Ostrovsky equation with variable coefficients in relation to surface and internal waves in a rotating ocean with a variable bottom topography. For solitary waves moving toward the beach, the terminal decay caused by the rotation effect can be suppressed by the shoaling effect. Two basic examples of a bottom profile are analyzed in detail and supported by direct numerical modeling. One of them is a constant‐slope bottom and the other is a specific bottom profile providing a constant amplitude solitary wave. Estimates with real oceanic parameters show that the predicted effects of stable soliton dynamics in a coastal zone can occur, in particular, for internal waves.  相似文献   

20.
Variational methods are employed to generate families of both regular and embedded solitary wave solutions for a generalized Pochammer PDE that is currently of great interest. The technique for obtaining the embedded solitons incorporates several recent generalizations of the usual variational technique and is thus topical in itself. One unusual feature of the solitary waves derived here is that we are able to obtain them in analytical form (within the family of the trial functions). Thus, a direct error analysis is performed, showing the accuracy of the resulting solitary waves. Given the importance of solitary wave solutions in wave dynamics and information propagation in nonlinear PDEs, as well as the fact that only the parameter regimes for the existence of solitary waves had previously been analyzed for the microstructure PDE considered here, the results obtained here are both new and timely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号