首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Liu Z  He C  Wu B  Wang X  Yang S 《Ultrasonics》2006,44(Z1):e1135-e1138
Different kinds of defects, such as corrosions, notches and cracks etc, exist in pipes. Mode choice is important since unfortunately not all ultrasonic guided wave modes are suitable for these kinds of defect detection. T(0,1) mode which is non-dispersive is the lowest and fastest torsional mode and most suitable for defect detection in pipes. Two completely different artificial defects including longitudinal and circumferential defects are processed successively in a 4-m-long, 60-mm-OD, 3.5-mm-wall steel pipe. T(0,1) mode at 45 kHz is excited to detect these defects using thickness shear mode piezoelectric elements. Experimental results show that two kinds of defects are detectable using T(0,1) mode. Comparing with longitudinal modes, torsional modes are dominant in pipe inspection for their sensitivities to different kinds of defects.  相似文献   

2.
In ultrasonic nondestructive inspection of large-diameter pipes and curved plate, longitudinal cracks are detected more efficiently by using guided circumferential waves. In the present, the study of guided circumferential waves and their application in detecting longitudinal defect were relative adequate when pipe material is isotropic. Based on linear three-dimensional elasticity, an orthogonal polynomial series expansions approach is used for determining the guided circumferential waves dispersion curves in homogeneous infinitely long orthotropic hollow cylinders. Results are compared with those published earlier and with the finite element simulation to check up the accuracy and range of applicability of this polynomial approach. Through the analysis of the displacements distributions and finite element simulation, the mode conversion of guided circumferential waves by end-reflection in cylindrical curved plate is discovered.  相似文献   

3.
Focusing is one of the most promising techniques for the detection of small defects in pipe works, in which guided waves including longitudinal and flexural modes are tuned so that ultrasonic energy can be focused at a target point in a pipe, and analysis of reflected waves gives information on defects such as location and size. In this paper, the focusing technique is discussed by way of a simulation of guided wave propagation in pipe by a semianalytical finite element method (SAFE). Experiments and SAFE calculations were compared for waveforms transmitted by a single transducer and received at different circumferential positions initially, and then the focusing phenomena were experimentally observed using focusing parameters obtained by calculations. Calculation and visualization were conducted to clarify focusing phenomena in pipe in investigating the potential of the focusing technique. These results show that the time-reversal idea helps in understanding focusing and that resolution of focusing is strongly affected by incident waveforms as well as the number of channels available in an experiment.  相似文献   

4.
Guided wave helical ultrasonic tomography of pipes   总被引:1,自引:0,他引:1  
Ultrasonic guided waves have been used for a wide variety of ultrasonic inspection techniques. We describe here a new variation called helical ultrasound tomography (HUT) that uses guided ultrasonic waves along with tomographic reconstruction algorithms that have been developed by seismologists for what they call "cross borehole" tomography. In HUT, the Lamb-like guided waves travel the various helical criss-cross paths between two parallel circumferential transducer arrays instead of the planar criss-cross seismic paths between two boreholes. Although the measurement itself is fairly complicated, the output of the tomographic reconstruction is a readily interpretable map of a quantity of interest such as pipe wall thickness. In this paper we demonstrate HUT via laboratory scans on steel pipe segments into which controlled thinnings have been introduced.  相似文献   

5.
苏娜娜  韩庆邦  蒋謇 《物理学报》2019,68(8):84301-084301
为研究无限大流体约束的孔隙圆柱中周向导波的传播规律,分析孔隙参数对导波传播特性的影响,建立了无限流体中孔隙介质圆柱的理论模型,利用孔隙介质弹性波动理论,建立了周向导波频散方程,通过数值模拟计算得到无限流体中孔隙介质圆柱的频散曲线,探讨了圆柱半径和孔隙参数对导波传播特性的影响,并对导波的衰减特性进行了分析;通过数值计算,得到了周向导波的时域波形,讨论了孔隙参数对波形的影响.结果表明,孔隙介质圆柱半径的改变影响圆柱尺度,孔隙度的改变影响孔隙介质中体声波的波速,都对周向导波频散曲线产生一定的影响,所得到的频散曲线特征及衰减曲线与时域波形吻合.研究结果对开展无限流体中孔隙介质圆柱的超声无损评价提供了一定的理论参考.  相似文献   

6.
Long range ultrasonic testing is now a well established method for examining in-service degradation in pipelines. In order to protect pipelines from the surrounding environment it is common for viscoelastic coatings to be applied to the outer surface. These coatings are, however, known to impact on the ability of long range ultrasonic techniques to locate degradation, or defects, within a coated pipe. The coating dissipates sound energy travelling along the pipe, attenuating both the incident and reflected signals making responses from defects difficult to detect. This article aims to investigate the influence of a viscoelastic coating on the ability of long range ultrasonic testing to detect a defect in an axisymmetric pipe. The article focuses on understanding the behaviour of the fundamental torsional mode and quantifying the effect of bitumen coatings on reflection coefficients generated by axisymmetric defects. Reflection coefficients are measured experimentally for coated and uncoated pipes and compared to theoretical predictions generated using numerical mode matching and a hybrid finite element technique. Good agreement between prediction and measurement is observed for uncoated pipes, and it is shown that the theoretical methods presented here are fast and efficient making them suitable for studying long pipe runs. However, when studying coated pipes agreement between theory and prediction is observed to be poor for predictions based on those bulk acoustic properties currently reported in the literature for bitumen. Good agreement is observed only after conducting a parametric study to identify more appropriate values for the bulk acoustic properties. Furthermore, the reflection coefficients obtained for the fundamental torsional mode in a coated pipe show that significant sound attenuation is present over relatively short lengths of coating, thus quantifying those problems commonly encountered with the use of long range ultrasonic testing on coated pipes in the field.  相似文献   

7.
Multipass welds made of 316L stainless steel are specific welds of the primary circuit of pressurized water reactors in nuclear power plants. Because of their strong heterogeneous and anisotropic nature due to grain growth during solidification, ultrasonic waves may be greatly deviated, split and attenuated. Thus, ultrasonic assessment of the structural integrity of such welds is quite complicated. Numerical codes exist that simulate ultrasonic propagation through such structures, but they require precise and realistic input data, as attenuation coefficients. This paper presents rigorous measurements of attenuation in austenitic weld as a function of grain orientation. In fact attenuation is here mainly caused by grain scattering. Measurements are based on the decomposition of experimental beams into plane-wave angular spectra and on the modeling of the ultrasonic propagation through the material. For this, the transmission coefficients are calculated for any incident plane wave on an anisotropic plate. Two different hypotheses on the welded material are tested: first it is considered as monoclinic, and then as triclinic. Results are analyzed, and validated through comparison to theoretical predictions of related literature. They underline the great importance of well-describing the anisotropic structure of austenitic welds for UT modeling issues.  相似文献   

8.
For the efficient long-range nondestructive structural health inspection of pipes, guided waves have become widely used. Among the various guided wave modes, the torsional wave is most preferred since its first branch is nondispersive. Our objective in this work is to develop a new magnetostrictive transducer configuration to transmit and receive torsional waves in cylindrical waveguides. The conventional magnetostrictive transducer for the generation and measurement of torsional waves consists of solenoid coils and a nickel strip bonded circumferentially to test pipes. The strip must be premagnetized by a permanent magnet before actual measurements. Because of the premagnetization, the transducer is not suitable for the long-term on-line monitoring of pipes buried underground. To avoid the cumbersome premagnetization and to improve the transduction efficiency, we propose a new transducer configuration using several pieces of nickel strips installed at 45 degrees with respect to the pipe axis. If a static bias magnetic field is also applied, the transducer output can be substantially increased. Several experiments were conducted to study the performance of the proposed transducer configuration. The proposed transducer configuration was also applied for damage detection in an aluminum pipe.  相似文献   

9.
在固井质量评价中主要利用套管中模式波的幅度或衰减变化反映水泥的胶结状况,不同测井仪器在套管中激发的模式波的类型不同,研究套管中各模式波的传播特征和影响因素可充分挖掘测量数据的潜在应用价值。CBL和SBT等测井仪器在套管中主要激发拉伸波,类同于平板中的零阶对称Lamb波,水泥环封隔测井仪器的斜入射模式在套管中主要激发套管弯曲波,类同于平板中的零阶反对称Lamb波,垂直入射模式激发套管共振波,类同于平板中的高阶对称Lamb波。该文重点分析了这些模式波的衰减特征及其对微环的响应,套管弯曲波在套后耦合轻质水泥时对微环不敏感,但在套后耦合常规水泥或重水泥时,其衰减明显高于胶结良好的状况;拉伸波对微环的存在最为敏感;套管共振波对微环不敏感。  相似文献   

10.
Propagation phenomena of wideband guided waves in a bended pipe   总被引:1,自引:0,他引:1  
Nishino H  Yoshida K  Cho H  Takemoto M 《Ultrasonics》2006,44(Z1):e1139-e1143
Ultrasonic guided waves in pipes have been anticipated as a rapid screening technique for pipe inspection because of their long-range propagation due to low energy leakage. In this paper, the propagation phenomena of guided waves in a bended pipe were investigated using a wideband laser ultrasonic system. The laser ultrasonic system, together with wavelet transformation, is a powerful tool for observing the dispersive phenomena intrinsic to guided waves. Bended stainless steel (SUS304) pipes with 6-mm outer diameter and 1-mm wall thickness were used in the experiments. The bending angles of the pipes were set to 0 degrees (straight pipe), 10 degrees, 30 degrees, 60 degrees and 90 degrees. The radius of the bend was 12.5 mm in all the pipes. A Q-switched Nd:YAG laser was employed to generate the guided waves. The generated guided waves were detected with a heterodyne interferometer. The obtained time-domain signals and their wavelet coefficients indicated the following two conclusions: (1) The amplitude of the F(1,1) mode converted from the L(0,1) mode increased with the increase of the bending angle. (2) Mode conversions from the L(0,1) to F(1,1) modes and vice versa were clearly observed in the low-frequency range up to around 200 kHz.  相似文献   

11.
Successful ultrasonic guided wave detection of flaws at support locations relies on the ability to distinguish between the reflection produced by a simple support on an undamaged pipe and the reflection produced by pipe flaws. Consequently, it is essential to know how the reflections produced by simple supports behave; very little work has so far been reported on this subject. Through finite element simulations and experiments, this study develops a systematic understanding of how ultrasonic guided waves propagating along a pipe, in particular the T(0, 1) mode, interact with simple supports. It is shown that, unlike the T(0, 1) mode in a free pipe, the torsional mode in a supported region has a cut-off frequency, below which it will not propagate; below this frequency the T(0, 1) reflection coefficient is large, and it quickly reduces beyond the cut-off.  相似文献   

12.
The use of ultrasonic guided waves and wavelets analysis in pipe inspection   总被引:7,自引:0,他引:7  
One of the main applications of guided waves is for pipe inspection, since its one-dimensional geometry allows inspecting long distances in a short time. As with most configurations (frequency, thickness) ultrasonic waves with many modes of propagation are generated, recent research focuses mostly on the generation and reception of specific modes, mainly by means of sophisticated arrays of transducers. In this paper this problem is addressed with a different approach, by processing ultrasonic signals with a low signal/noise ratio acquired with a single transducer in an pulse–echo configuration. In order to improve the evaluation of results, frequency bandpass filters and wavelet analysis were tested. Results showed that even when very noisy signals are utilized, signal processing improve the signal/noise (S/N) ratio up to 12 dB approximately and enhance the analysis of the results, thus demonstrating its usefulness.  相似文献   

13.
钢-混凝土结构是土木工程中的一种常用结构形式,钢与混凝土粘接处可能出现弱粘接甚至完全脱粘的缺陷,严重影响结构的安全性。该文提出利用空气耦合超声导波衰减的方法实现钢-混凝土结构粘接状态的非接触无损检测方法,分析不同厚度粘接界面对超声导波衰减的影响。基于全局矩阵技术对钢-混凝土结构求解理论频散方程和衰减曲线,得到界面层不同粘接条件下的理论参数及衰减特性。建立不同粘接条件的有限元模型,定量分析不同模态对粘接缺陷的检测敏感度。研究界面层厚度分别为1 mm和2 mm两种情况下S0能量的衰减情况。研究结果表明:S0模态可有效判断粘接结构的粘接状态,对于同一界面层厚度,随着界面粘接条件变弱,S0最大幅值与A0最大幅值比不断增大;不同厚度同一粘接条件下,2 mm相较于1 mm该值更大。该方法在钢-混凝土结构粘接界面缺陷的检测方面具有良好的应用价值和发展前景。  相似文献   

14.
无限液体介质内管道轴对称纵向导波激发与传播特性研究   总被引:1,自引:0,他引:1  
利用声-结构耦合有限元法,分别对轴对称分布径的向及轴向外力作用在无限液体介质内未充液及充液管道内壁所激发导波进行了模拟,并进一步利用短时傅里叶变换技术对瞬态波形作时频分析,在此基础上,结合色散及衰减曲线,探讨了外力分布特征对导波激发的影响。研究表明,无限液体介质内未充液管中L(0,2)模式及充液管中L(0,3)~L(0,4)模式皆具有高群速度、弱色散且弱衰减频带,适宜用于缺陷探测,而通过控制轴对称分布外力的频率,并令其沿轴向作用于管内壁或外壁,可实现上述导波模式的高效激发。   相似文献   

15.
Lamb wave tomography of pipe-like structures   总被引:2,自引:0,他引:2  
Leonard KR  Hinders MK 《Ultrasonics》2005,43(7):574-583
Lamb waves are guided ultrasonic plate waves that can follow the curvature of pipe-like structures. By transmitting and receiving many helically propagating Lamb waves via longitudinal transducers in contact with the surface of a pipe, crosshole tomographic geometries can be mimicked and tomographic reconstructions performed in order to locate and size flaws. We describe here a meridional-array scheme which mimics a single line of transducers along the exterior surface of the pipe in the axial direction, and show proof of concept results on a pipe sample with an internal wall-thinning. We also demonstrate improved reconstructions for the other helical ultrasound tomography geometry where the transmitters and receivers lie along parallel circumferential rings. We find frequency compounding smoothes out some of the noise and artifacts that appear in the reconstructions.  相似文献   

16.
With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This “optimal” mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection.  相似文献   

17.
长骨中振动声激发超声导波的方法   总被引:1,自引:0,他引:1       下载免费PDF全文
刘珍黎  宋亮华  白亮  许凯亮  他得安 《物理学报》2017,66(15):154303-154303
为了实现一定频段内任意低频下在长骨中激励导波信号,本文提出一种采用聚焦高频(5 MHz)超声换能器在长骨皮质骨中激发低频(150 kHz)超声导波的振动声方法.首先介绍了板状超声导波理论和双声束共聚焦法与单声束调幅法激发振动声的基本原理;进而采用三维有限元仿真方法分析振动声激发低频超声导波的基本现象,然后结合牛胫骨板离体实验,验证振动声激发低频超声导波的可行性.结果均表明,双声束共焦与单声束振动超声均可在骨板中激发低频超声导波.相关研究方法有助于提高空间域长骨中超声导波测量精度,以及在一定频段内实现任意频率激励等,对发展低频超声导波在体测量长骨皮质骨的新技术具有一定的指导意义.  相似文献   

18.
Li J  Rose JL 《Ultrasonics》2006,44(1):35-45
The propagation of non-axisymmetric guided waves in larger diameter pipes is studied in this paper by treating the guided waves as corresponding Lamb waves in an unwrapped plate. This approximation leads to a simpler method for calculating the phase velocities of hollow cylinder guided waves, which reveals a beam focusing nature of non-axisymmetric guided waves generated by a partial source loading. The acoustic fields in a pipe generated by a partial-loading source includes axisymmetric longitudinal modes as well as non-axisymmetric flexural modes. The circumferential distribution of the total acoustic field, also referred as an angular profile, diverges circumferentially while guided waves propagate with dependence on such factors as mode, frequency, cylinder size, propagation distance, etc. Exact prediction of the angular profile of the total field can only be realized by numerical calculations. In particular cases, however, when the wall thickness is far less than the cylinder diameter and the wavelength is smaller than or comparable to the pipe wall thickness, the acoustic field can be analyzed based on the characteristics of Lamb waves that travel along a periodic unwrapped plate. Based on this assumption, a simplified model is derived to calculate the phase velocities of non-axisymmetric flexural mode guided waves. The model is then applied to discussions on some particular characteristics of guided-wave angular profiles generated by a source loading. Some features of flexural modes, such as cutoff frequency values are predicted with the simpler model. The relationship between the angular profiles and other factors such as frequency, propagation distance, and cylinder size is obtained and presented in simple equations. The angular profile rate of change with respect to propagation distance is investigated. In particular, our simplified model for non-axisymmetric guided waves predicts that the wave beam will converge to its original circumferential shape after the wave propagates for a certain distance. A concept of "natural focal point" is introduced and a simple equation is derived to compute the 1st natural focal distance of non-axisymmetric guided waves. The applicable range of the simplified equation is provided. Industrial pipes meet the requirement of wall thickness being far less than the pipe diameter. The approximate analytical algorithms presented in this paper provides a convenient method enabling quick acoustic field analysis on large-diameter industrial pipes for NDE applications.  相似文献   

19.
The objective of the research presented here is the investigation of the interaction of guided waves with welds, defects and other non-uniformities in steel plates loaded by liquid. The investigation has been performed using numerical simulation for 2D and 3D cases by the finite differences method, finite element method and measurement of 3D distributions of acoustic fields. Propagation of the S(0) mode in a steel plate and its interaction with non-uniformities was investigated. It was shown that using the measured leaky wave signals in the water loading of the steel plate and by application of signal processing, the 3D ultrasonic field structure inside and outside of the plate can be reconstructed. The presence of leaky wave signals over the defect caused by the mode conversion of Lamb waves has been proved using the numerical modelling and experimental investigations. The developed signal and data processing enables to visualise dynamics of ultrasonic fields over the plate, and also to estimate spatial positions of defects inside the steel plates.  相似文献   

20.
A semianalytical solution alternative and complementary to modal technique is presented to predict and interpret the ultrasonic pulsed-bounded-beam propagation in a solid cylinder embedded in a solid matrix. The spectral response to an inside axisymmetric velocity source of longitudinal and transversal cylindrical waves is derived from Debye series expansion of the embedded cylinder generalized cylindrical reflection/transmission coefficients. So, the transient guided wave response, synthesized by inverse double Fourier-Bessel transform, is expressed as a combination of the infinite medium contribution, longitudinal, transversal, and coupled longitudinal and transversal waveguide sidewall interactions. Simulated (f, 1/lambdaz) diagrams show the influence of the number of waveguide sidewall interactions to progressively recover dispersion curves. Besides, they show the embedding material filters specific signal portions by concentrating the propagating signal in regions where phase velocity is closer to phase velocity in steel. Then, simulated time waveforms using broadband high-frequency excitation show that signal leading portions exhibit a similar periodical pattern, for both free and embedded waveguides. Debye series-based interpretation shows that double longitudinal/transversal and transversal/longitudinal conversions govern the time waveform leading portion as well as the radiation attenuation in the surrounding cement grout. Finally, a methodology is deduced to minimize the radiation attenuation for the long-range inspection of embedded cylinders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号