首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a novel coloring algorithm based on local search. We analyze its performance, and report several experimental results on DIMACS benchmark graphs. From our experiments, this algorithm looks robust, and yields a substantial speed up on previous algorithms for coloring. Our algorithm improves the best known coloring for four different DIMACS benchmark graphs: namely, Le450-25c, Le450-25d and Flat300_28_0 and Flat1000_76_0. Furthermore, we have run experiments on a simulator to get insights on its cache consciousness: from these experiments, it appears that the algorithm performs substantially less cache misses than other existing algorithms.  相似文献   

2.
Solution of an optimization problem with linear constraints through the continuous Hopfield network (CHN) is based on an energy or Lyapunov function that decreases as the system evolves until a local minimum value is attained. This approach is extended in to optimization problems with quadratic constraints. As a particular case, the graph coloring problem (GCP) is analyzed. The mapping procedure and an appropriate parameter-setting procedure are detailed. To test the theoretical results, some computational experiments solving the GCP are shown.  相似文献   

3.
A proper k-coloring C1,C2,…,Ck of a graph G is called strong if, for every vertex uV(G), there exists an index i{1,2,…,k} such that u is adjacent to every vertex of Ci. We consider classes of strongly k-colorable graphs and show that the recognition problem of is NP-complete for every k4, but it is polynomial-time solvable for k=3. We give a characterization of in terms of forbidden induced subgraphs. Finally, we solve the problem of uniqueness of a strong 3-coloring.  相似文献   

4.
Given an edge-weighted graph and an integer k, the generalized graph coloring problem is the problem of partitioning the vertex set into k subsets so as to minimize the total weight of the edges that are included in a single subset. We recall a result on the equivalence between Karush-Kuhn-Tucker points for a quadratic programming formulation and local optima for the simple flip-neighborhood. We also show that the quality of local optima with respect to a large class of neighborhoods may be arbitrarily bad and that some local optima may be hard to find.  相似文献   

5.
We generalize to the bandwidth coloring problem a classical theorem, discovered independently by Gallai, Roy and Vitaver, in the context of the graph coloring problem. Two proofs are given, a simple one and a more complex one that is based on a series of equivalent mathematical programming models.  相似文献   

6.
7.
We consider the vertex coloring problem, which can be stated as the problem of minimizing the number of labels that can be assigned to the vertices of a graph G such that each vertex receives at least one label and the endpoints of every edge are assigned different labels. In this work, the 0-1 integer programming formulation based on representative vertices is revisited to remove symmetry. The previous polyhedral study related to the original formulation is adapted and generalized. New versions of facets derived from substructures of G are presented, including cliques, odd holes and anti-holes and wheels. In addition, a new class of facets is derived from independent sets of G. Finally, a comparison with the independent sets formulation is provided.  相似文献   

8.
For almost two decades the question of whether tabu search (TS) or simulated annealing (SA) performs better for the quadratic assignment problem has been unresolved. To answer this question satisfactorily, we compare performance at various values of targeted solution quality, running each heuristic at its optimal number of iterations for each target. We find that for a number of varied problem instances, SA performs better for higher quality targets while TS performs better for lower quality targets.  相似文献   

9.
A Branch-and-Cut algorithm for graph coloring   总被引:1,自引:0,他引:1  
In this paper a Branch-and-Cut algorithm, based on a formulation previously introduced by us, is proposed for the Graph Coloring Problem. Since colors are indistinguishable in graph coloring, there may typically exist many different symmetrical colorings associated with a same number of colors. If solutions to an integer programming model of the problem exhibit that property, the Branch-and-Cut method tends to behave poorly even for small size graph coloring instances. Our model avoids, to certain extent, that bottleneck. Computational experience indicates that the results we obtain improve, in most cases, on those given by the well-known exact solution graph coloring algorithm Dsatur.  相似文献   

10.
Variable space search for graph coloring   总被引:1,自引:0,他引:1  
Let G=(V,E) be a graph with vertex set V and edge set E. The k-coloring problem is to assign a color (a number chosen in {1,…,k}) to each vertex of G so that no edge has both endpoints with the same color. We propose a new local search methodology, called Variable Space Search, which we apply to the k-coloring problem. The main idea is to consider several search spaces, with various neighborhoods and objective functions, and to move from one to another when the search is blocked at a local optimum in a given search space. The k-coloring problem is thus solved by combining different formulations of the problem which are not equivalent, in the sense that some constraints are possibly relaxed in one search space and always satisfied in another. We show that the proposed algorithm improves on every local search used independently (i.e., with a unique search space), and is competitive with the currently best coloring methods, which are complex hybrid evolutionary algorithms.  相似文献   

11.
For a graph G and its complement , we define the graph coloring polytope P(G) to be the convex hull of the incidence vectors of star partitions of . We examine inequalities whose support graphs are webs and antiwebs appearing as induced subgraphs in G. We show that for an antiweb in G the corresponding inequality is facet-inducing for P(G) if and only if is critical with respect to vertex colorings. An analogous result is also proved for the web inequalities.  相似文献   

12.
Given an undirected graph G=(V,E)G=(V,E) with a set V of vertices and a set E of edges, the graph coloring problem consists of partitioning all vertices into k independent sets and the number of used colors k is minimized. This paper presents a memetic algorithm (denoted by MACOL) for solving the problem of graph coloring. The proposed MACOL algorithm integrates several distinguished features such as an adaptive multi-parent crossover (AMPaX) operator and a distance-and-quality based replacement criterion for pool updating. The proposed algorithm is evaluated on the DIMACS challenge benchmarks and computational results show that the proposed MACOL algorithm achieves highly competitive results, compared with 11 state-of-the-art algorithms. The influence of some ingredients of MACOL on its performance is also analyzed.  相似文献   

13.
We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm.  相似文献   

14.
In the Corridor Allocation Problem, we are given n facilities to be arranged along a corridor. The arrangements on either side of the corridor should start from a common point on the left end of the corridor. In addition, no space is allowed between two adjacent facilities. The problem is motivated by applications such as the arrangement of rooms in office buildings, hospitals, shopping centers or schools. Tabu search and simulated annealing algorithms are presented to minimize the sum of weighted distances between every pair of facilities. The algorithms are evaluated on several instances of different sizes either randomly generated or available in the literature. Both algorithms reached the optimal (when available) or best-known solutions of the instances with n ? 30. For larger instances with size 42 ? n ? 70, the simulated annealing implementation obtained smaller objective values, while requiring a smaller number of function evaluations.  相似文献   

15.
Packing coloring is a partitioning of the vertex set of a graph with the property that vertices in the i-th class have pairwise distance greater than i. The main result of this paper is a solution of an open problem of Goddard et al. showing that the decision whether a tree allows a packing coloring with at most k classes is NP-complete.We further discuss specific cases when this problem allows an efficient algorithm. Namely, we show that it is decideable in polynomial time for graphs of bounded treewidth and diameter, and fixed parameter tractable for chordal graphs.We accompany these results by several observations on a closely related variant of the packing coloring problem, where the lower bounds on the distances between vertices inside color classes are determined by an infinite nondecreasing sequence of bounded integers.  相似文献   

16.
The nesting problem in the textile industry is the problem of placing a set of irregularly shaped pieces (calledstencils) on a rectangularsurface, such that no stencils overlap and that thetrim loss produced when cutting out the stencils is minimized. Certain constraints may put restrictions on the positions and orientation of some stencils in the layout but, in general, the problem is unconstrained. In this paper, an algorithmic approach using simulated annealing is presented covering a wide variety of constraints which may occur in the industrial manufacturing process. The algorithm has high performance, is quite simple to use, is extensible with respect to the set of constraints to be met, and is easy to implement.The work of this author was supported in part by grant Le 491/3-1 from the German Research Association (DFG).  相似文献   

17.
This work proposes a new integer programming model for the partition coloring problem and a branch-and-price algorithm to solve it. Experiments are reported for random graphs and instances originating from routing and wavelength assignment problems arising in telecommunication network design. We show that our method largely outperforms previously existing approaches.  相似文献   

18.
This paper presents a simulated annealing based heuristic approach for the team orienteering problem with time windows (TOPTW). Given a set of known locations, each with a score, a service time, and a time window, the TOPTW finds a set of vehicle tours that maximizes the total collected scores. Each tour is limited in length and a visit to a location must start within the location’s service time window. The proposed heuristic is applied to benchmark instances. Computational results indicate that the proposed heuristic is competitive with other solution approaches in the literature.  相似文献   

19.
This paper studies the solution of graph coloring problems by encoding into propositional satisfiability problems. The study covers three kinds of satisfiability solvers, based on postorder reasoning (e.g., grasp, chaff), preorder reasoning (e.g., 2cl, 2clsEq), and back-chaining (modoc). The study evaluates three encodings, one of them believed to be new. Some new symmetry-breaking methods, specific to coloring, are used to reduce the redundancy of solutions. A by-product of this research is an implemented lower-bound technique that has shown improved lower bounds for the chromatic numbers of the long-standing unsolved random graphs known as DSJC125.5 and DSJC125.9. Independent-set analysis shows that the chromatic numbers of DSJC125.5 and DSJC125.9 are at least 18 and 40, respectively, but satisfiability encoding was able to demonstrate only that the chromatic numbers are at least 13 and 38, respectively, within available time and space.  相似文献   

20.
《Discrete Mathematics》2020,343(6):111712
The weak r-coloring numbers wcolr(G) of a graph G were introduced by the first two authors as a generalization of the usual coloring number col(G), and have since found interesting theoretical and algorithmic applications. This has motivated researchers to establish strong bounds on these parameters for various classes of graphs.Let Gp denote the pth power of G. We show that, all integers p>0 and Δ3 and graphs G with Δ(G)Δ satisfy col(Gp)O(pwcolp2(G)(Δ1)p2); for fixed tree width or fixed genus the ratio between this upper bound and worst case lower bounds is polynomial in p. For the square of graphs G, we also show that, if the maximum average degree 2k2<mad(G)2k, then col(G2)(2k1)Δ(G)+2k+1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号