首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rh(COD) and Ir(COD) homobimetallic complexes of s-indacene-diide, 2,6-dimethyl-s-indacene-diide, as-indacene-diide, and 2,7-dimethyl-as-indacene-diide have been synthesized from the di-lithium salts of the dianions and metal dimers [M(μ-Cl)L2]2 (M = Rh, Ir; L2 = COD, NBD, (ethylene)2, (CO)2 as mixtures of syn and anti isomers. The syn/anti ratio depends on the nature of the ancillary ligands at the metal and on the s or as geometry of the bridging ligand. In the reaction of the 2,7-dimethyl-as-indacene-diide-[M(COD)]2 species with CO, the higher reactivity of the syn isomers has been justified on the basis of a greater instability of the ground state due to steric interactions between the COD groups. Bis-η1 metal-bonded intermediates have been identified in the carbonylation of iridium derivatives; on the other hand, the formation of the bis-η5 mixed complexes syn and anti-{2,7-dimethyl-as-indacene-diide-[Rh(COD)][Rh(CO)2]} and their reactivity strongly support the existence of metal---metal interaction in the rhodium derivatives.  相似文献   

2.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

3.
The pyrolysis products of CH2=C(CH3)---NO (syn form) have been determined by microwave spectroscopy. The pyrolysis products of CH2=C(CH3)---NO (syn form) and its 15N isotopic species were found to be CH2=O, CH3CN, and CH3C15N. The produce of formaldehyde and methyl cyanide suggests that the C=C and N=O double bonds of CH2=C(CH3)---N=O (syn form) were broken. To explain the generation of the two molecules, a four-membered ring molecule (9) as an intermediate, is proposed. The four-membered ring molecule as an intermediate is also supported by ab initio MO calculation. Applying the pyrolysis mechanism obtained for 2-nitrosopropene (syn form) to that of 1,1,2-trichloronitrosoethane, one of its complicated pyrolysis mechanisms was explained. The rotational constants and geometrical parameters of two intermediates, 9 and CH2=CCl---NO (13), were obtained by ab initio MO calculation (MP2/6-31G**) to predict their microwave spectra.  相似文献   

4.
The asymmetric synthesis of functionalized homoallylic amines and silyl functionalized pyrrolidines through the Lewis acid promoted condensation of chiral (E)-crotylsilanes with sulfonyl imines and in situ generated N-acyl imines is described. We had anticipated that this bond construction could be used in the asymmetric synthesis of the N-terminal amino acid subunit of the nikkomycins. Aryl sulfonyl imines condense with chiral silane reagents in the presence of BF3·OEt2 to form homoallylic arylsulfonyl amines with useful levels of syn selectivity. For cases involving aryl N-acyl imines we have learned that the temperature controls the course of the reaction. For instance, at temperatures of −78°C or below the major product is the pyrrolidine, while at higher temperatures (−30 to −20°C) the homoallylic amine is produced. For the cases studied, the [3+2]-annulation is limited to aryl imine derivatives, as alkyl- and branched- imines failed to produce the pyrrolidine derivatives: higher reaction temperatures promote the conversion of the annulation product to the homoallylic amines. In double stereodifferentiating reactions with in situ generated imines, good levels of selectivity were achieved in the formation of secondary amines bearing synanti and synsyn stereochemical triads.  相似文献   

5.
13C cross polarization-magic angle spinning NMR spectra were measured for a series of peptides containing -valine, -leucine and -aspartic acid residues, for which the crystal structures were already determined by X-ray diffraction, in order to investigate the relationship between hydrogen-bond lengths (RN…O) and 13C chemical shifts of amide carbonyl carbons in the peptides. From these experimental results, it was found that the isotropic 13C chemical shifts (δiso) of the amino acid residues move linearly downfield with a decrease in RN…O within the hydrogen-bonded length range considered here and also shown in our previous work on glycine and -alanine residues as expressed by δiso(ppm) = abRN…O(Å) where a and b are 215.4 (ppm) and 14.2 (ppm Å−1) for the -valine residue, 202.2 (ppm) and 10.0 (ppm Å−1) for the -leucine residue, and 199.0 (ppm) and 9.6 (ppm Å−1) for the -aspartic acid residue, respectively. Using these relations, the RN…O values of some polypeptides in the crystalline state were determined through the observation of the amide carbonyl carbon chemical shifts. These values were compared with those determined by the X-ray diffraction method. Furthermore, quantum-chemical calculation of the 13C shielding constant for a model compound was carried out by the finite perturbation theory INDO method in order to ascertain the 13C shielding behavior in the formation of hydrogen bonds.  相似文献   

6.
The P-functional organotin dichloride [Ph2P(CH2)3]2SnCl2 (3) is synthesized by reaction of Ph2P(CH2)3MgCl with SnCl4 independently of the molar ratio of the starting compounds. The corresponding organotin trichlorides Ph2P(CH2)nSnCl2R (4: n=2, R=Cl; 5: n=3, R=Cl; 6: n=3, R=Me) are formed in a cleavage reaction of Ph2P(CH2)nSnCy3 (n=2, 3) with SnCl4 or MeSnCl3, respectively. The main features of the crystal structures of 3–6 are both intra- and intermolecular PSn coordinations and the existence of intermolecular Sn---ClSn bridges. For further characterization of the title compounds, the adducts 4(Ph3PO)2 (7) and 5(Ph3PO) (8), as well as the P-oxides and P-sulfides of 3–6 (9–15), are synthesized. The results of crystal structure analyses of 7, 11, 12, and 14 are reported. The structures of 9–15 are characterized by intramolecular P=XSn interactions (X=O, S). A first insight into the structural behavior of the compounds 3–15 in solution is discussed on the basis of multinuclear NMR data.  相似文献   

7.
The molecular structure of 2-furoyl chloride has been investigated by gas-phase electron diffraction at 86°C. Two distinct conformers were identified, a more stable planar form with the furan oxygen and the carbonyl oxygen syn and a less stable planar (or nearly planar) anti form. Assuming that the two forms differ in their geometries only in the O=C---C---O torsion angles and assuming the furan ring to have C2v symmetry, the results for some of the distances (ra) and angles (a) are: r(C---H) = 1.110(20) Å, r(C=O) = 1.207(6) Å, r(C---O) = 1.378(10) Å, r(C??? = 1.465(13) A, (r(C---C)) (average carbon—carbon distance in the furan ring) = 1.392(8) A Δr(C---C) (difference between single and double carbon—carbon distances in the furan ring) = 0.069 A (assumed), r(C---Cl) = 1.787(6) A, C=C---COCl = 131.6(9)°, C=C---O = 110.9(4)°, C=C---H = 127.7(13.4)°, C---C=O = 125.8(8)° and C---C---Cl = 111.8(6)°. At 359 K the observed amount of the conformer with the oxygen atoms syn was 69.8(14.2)%.  相似文献   

8.
Hydrostannation of mono- and disubstituted alkynes with trineophyltin hydride (1) leads to vinylstannanes in good to excellent yields, the configuration of the products depending on the reaction conditions. Thus, whereas hydrostannation under radical conditions leads stereoselectively to only one of the two possible products corresponding to an anti addition in 60–99% yield, the additions catalyzed by bis(triphenylphosphine)palladium dichloride gave mixtures of the syn adducts (60–79% yield). Full 1H-, 13C-, and 119Sn-NMR as well as mass spectra data of the organotin adducts are given.  相似文献   

9.
The e.m.f. of the galvanic cells Pt,C,Te(l),NiTeO3,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt and Pt,C,NiTeO3,Ni3TeO6,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt (where 15 YSZ=15 mass% yttria-stabilized zirconia) was measured over the ranges 833–1104 K and 624–964 K respectively, and could be represented by the least-squares expressions E(1)±1.48 (mV) = 888.72 − 0.504277 (K) and E(II) ±4.21 (mV) = 895.26 − 0.81543T (K).

After correcting for the standard state of oxygen in the air reference electrode, and by combining with the standard Gibbs energies of formation of NiO and TeO2 from the literature, the following expressions could be derived for the ΔG°f of NiTeO3 and Ni3TeO6: ΔGf°(NiTeO3) ± 2.03 (kJ mol−1) = −577.30 + 0.26692T (K) and ΔG°f(Ni3TeO6)±2.54 (kJ mol−1) = −1218.66 + 0.58837T (K).  相似文献   


10.
[CuL·B]q model systems, where L2− is the tridentate Schiff base ligand formed by the condensation of salicylaldehyde with alanine, B is imidazole, q=−1, 0 and +1, are optimized at B3LYP/6-31G* level of theory. Their electronic structure is described in terms of Mulliken population analysis and reactivity indices of Fukui. The total energy of [CuL·B]q species increases with the electron removal. The reactivity indices suitable for the alcohol (sugar) adducts formation (CuOsugar and OphenoxylHsugar interactions) are in the neutral molecule as well as in the singlet cation. Despite the similar trends in Cu–Ophenoxyl bonding and significant Ophenoxyl spin density in triplet cation, the catalytic mechanism of sugars oxidation proposed for the galactose oxidase cannot be used in our system because the [CuL·B]+ formation is energetically unfavorable. The imidazole nitrogen deprotonation is more probable than of the alanine ternary carbon atom.  相似文献   

11.
The complex (μ-H)5Os3Re(CO)12 crystallizes in the centrosymmetric hexagonal space group P63/m (C26h; No. 176) with a 19.087(5), c 10.963(1) Å, V 3459(3) Å3, and Z = 6. Diffraction data were collected on a Syntex P21 automated four-circle diffractometer (Mo-K radiation, 2θ = 4.5–45.0°) and the structure was refined to RF = 7.9% for all 1480 unique reflections (RF = 5.4% for those 1007 data with ¦Fo¦ > 6σ(¦Fo¦)). The molecule contains a tetrahedral core of metal atoms each associated with three terminal carbonyl ligands. It is bisected by a crystallographic mirror plane. Although the hydride ligands were not located, a consideration of metal-metal distances allows the distinction between osmium and rhenium atoms and suggests that the structure is subject to a subtle form of two-fold disorder.  相似文献   

12.
Characterization of six flavones, which were named substances G1, G2, G3, G4, G5 and G6 according to their RF values in normal-phase thin-layer chromatography, is reported. The pure flavones were purified after maceration with methanol by normal-phase solid-phase extraction, normal-phase medium-pressure liquid chromatography, normal-phase preparative thin-layer chromatography and preparative reversed-phase high-performance liquid chromatography (RP-HPLC). The collected fractions of several isolation steps were analyzed by normal-phase (NP) and RP-HPLC. Detection and identification of the substances G was accomplished by UV detection at 213–216 nm, diode array UV detection, or fluorescence detection (λex=330 nm; λem=440 nm). The molecular mass, the elementary composition, and the structure of the six components was determined by electron-impact high-resolution mass spectrometry (EI-HRMS). Substance G4 was identified as 3′,4′,5′-trimethoxyflavone. The substances G1–G6 were shown to be mono-, di- tri- and pentamethoxyflavones. HPLC–electrospray ionization tandem mass spectrometry (ESI-MS–MS) of the flavones was carried out employing a 150×2 mm I.D. column packed with a 3 μm/100 Å octadecylsilica stationary phase and a mobile phase comprising 1.0% acetic acid in water–acetonitrile (50:50). Comparative RP-HPLC–ESI-MS of the raw methanol extract and the isolated substances G1–G6 proved that the isolated compounds were pure and were not artifacts. Finally, RP-HPLC–ESI-MS–MS was used to identify substances G1–G6 in phytopharmaceutical drugs.  相似文献   

13.
Reactions of the lithium salts of 3-substituted indenes 1, 2 with ZrCl4(THF)2 gave two series of nonbridged bis(1-substituted)indenyl zirconocene dichloride complexes. Fractional recrystallization from THF–petroleum ether furnished the pure racemic and mesomeric isomers of [(η5-C9H6-1-C(R1)(R2)---o-C6H4---OCH3)2ZrCl2nTHF (R1=R2=CH3, n=1, rac-1a and meso-1b; R1=CH3, R2=C2H5; n=0.5 or 0, rac-2a and meso-2b), respectively. Complex 1a was further characterized by X-ray diffraction to have a C2 symmetrically racemic structure, where the six-member rings of the indenyl parts are oriented laterally and two o-CH3O---C6H4---C(CH3)2--- substituents are oriented to the open side of the metallocene (Ind: bis-lateral, anti; Substituent: bis-central, syn). The four zirconocene complexes are highly symmetrical in solution as characterized by room temperature 1H-NMR, however 1H–1H NOESY of meso-1b shows that some of the NOE interactions arise from the two separated indenyl parts of the same molecule, which can only be well explained by taking into account the torsion isomers in solution.  相似文献   

14.
The paper reviews results from computational studies by molecular orbital and density functional theories on several series of hydrogen bonded complexes. These studies aim at quantifying the reactivity of molecules for the complexation process. Excellent linear relationships are found between the electrostatic potential values at the sites of the electron donor and electron accepting atoms and the energy of hydrogen bond formation (ΔE). The series studied are: (a) complexes of R–CHO and R–CN molecules with hydrogen fluoride; (b) complexes of mono-substituted acetylene derivatives with ammonia; (c) (HCN)n hydrogen bonded cluster for n=2–7. All 22 studied complexes of carbonyl and nitrile compounds with hydrogen fluoride fall in the same dependence between the energy of hydrogen bond formation and the electrostatic potential at the atomic site of the carbonyl oxygen and nitrile nitrogen atoms, with linear regression correlation coefficient r=0.979. In the case of complexes of mono-substituted acetylene and diacetylene derivatives with NH3, the correlation coefficient for the dependence between the electrostatic potential at the acidic hydrogen atom and ΔE equals 0.996. For the series of hydrogen bonded (HCN)n clusters, the correlation coefficient for the relationship between the electrostatic potential at the end nitrogen atom and ΔE is r=0.9996. Similarly, the analogous relationship with the electrostatic potential at the end hydrogen atom has a regression coefficient equal to 0.9994. The dependencies found are theoretically substantiated by applying the Morokuma energy decomposition scheme. The results show that the molecular electrostatic potential at atomic sites can be successfully used to predict the ability of molecules to form hydrogen bonds.  相似文献   

15.
A potentially decadentate ligand, 1,1,4,7,10,10-hexakis(3,5-dimethyl-1-pyrazolylmethyl)-1,4,7,10-tetraazadecane (tthd), has been synthesized from the reaction of tri-ethylenetetramine with six equivalents of N-hydroxymethyl-3,5-dimethylpyrazole. The tthd ligand forms coordination compounds, M2(tthd)(ClO4)4(H2O)x, when M is Co, Ni, Cu, Zn and Cd and x = 4–8; and M2(tthd)(A)2(ClO4)2(H2O)x when M is Co and Ni, A is NCS or Cl, and x = 4–8. The cobalt compound, Co2(tthd)(ClO4)2(H2O)2(MeOH)1.75, crystallizes in the triclinic space group P1, a = 1.959(2), b = 1.5657(3), c = 2.1244(3) nm, = 105.5(1), β = 96.9(1), γ = 112.1(1). Due to severe disorder of the anions the structure could only be refined to an Rw, value of 0.099. The ligand acts as a decadentate, dinucleating ligand. The cobalt ions are distorted octahedrally surrounded by five N-atoms of the tthd ligand and an O-atom of water occupying the sixth coordination place. The other perchlorate compounds have very similar structures, as can be concluded from spectroscopic data.

In the thiocyanate and chloride compounds the anions have replaced the coordinated water molecules, resulting in octahedral Ni compounds. With Co thiocyanate, however, tthd acts as an octadentate ligand, resulting only in five-coordinated compounds.  相似文献   


16.
The influence of hyperconjugative interactions on bond lengths of some allylic compounds (H2CCH–CH2–M(CH3)3; M=C, Si, Ge) has been investigated through NBO calculations using ab initio and density functional methods. The optimized structural parameters, at the B3LYP/6-31+G(d,p) and HF/6-31+G(d,p) levels, showed a good agreement with the resonance theory. Partial geometry optimization with orbital interactions removed confirmed the observations and revealed that σ→σ* interactions, together with the more common σ→π* ones, play an important role in determining the variations in bond lengths on going from C to Ge.  相似文献   

17.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   


18.
A single crystal of the azidoalane [Me2N(CH2)3]AltBu(N3) (1a), grown in a capillary using a miniature zone melting procedure, was investigated by X-ray analysis. Compound 1a (C9H21AlN4) is a monomeric species in the solid state, which crystallizes in the monoclinic space group P21 with a=6.8560(14) Å, b=12.251(3) Å, c=7.786(2) Å, β=108.51(3)° and Z=2. The results of the X-ray structural determination are compared with the calculated structure of 1a (HF/6-31G(d) and B3LYP/6-31G(d) level of theory). Whereas the overall agreement between the measured and calculated structure is good, the Al–N donor-bond length differs by 11 and 12 pm at the HF and B3LYP level, respectively. To evaluate the effects of a polar environment on the molecular structure of 1a self-consistent reaction field (SCRF) calculations at the HF and B3LYP level with the 6-31G(d) basis set were performed.  相似文献   

19.
All possible H9-tautomers of 8-oxo-guanine and xanthine were studied by means of PM3 semiempirical and DFT (density functional theory) quantum chemistry methods. Additionally, the five most stable tautomers of both guanine derivatives were estimated on 3-21G, 6-31G, 6-31G** and MP2 (6-31G**) ab initio levels. The impact of the environment polarity on the tautomeric equilibrium was also taken into account. Among the variety of tautomeric isomers most probable are diketo forms of both studied derivatives in non-polar and polar surroundings.

The tautomeric equilibrium was unchanged after connection of the sugar backbone. The most preferred diketo forms of 8-oxo-guanosine and xanthidine are in syn conformations both in polar and non-polar environments. The increase of the syn conformations over anti ones may have the source in the formation of the internal hydrogen bonds between H′5 and N3 atoms. The calculated values of the pseudorotation phase angle were between 144 and 180° in all cases. This corresponds to C′2-endo conformations of all optimised structures.

The N-glycosidic bond stability of most stable tautomers was compared to standard guanosine. Most tautomers of 8-oxo-guanosine and xanthidine are characterised by more stable C1′-N9 bond. This indicates that both these derivatives are hardly susceptible to spontaneous depurination and its removal from the DNA will depend mostly on the activity of DNA repair enzymes.  相似文献   


20.
De-Dong Wu  Thomas C. W. Mak 《Polyhedron》1994,13(24):3333-3339
Two polymeric mercury(II) halide adducts of an olefinic double betaine, cis-(p-Me2NC5H4N+)2C2(COO)2 (L), have been prepared and characterized by X-ray crystallography. [{Hg2L2Cl4·6HgCl2}n] (1) crystallizes in the monoclinic space group C2/c with Z = 4, and [{Hg2L2Br4·HgBr2}n] (2) in the triclinic space group P with Z = 1. Complexes 1 and 2 are structurally similar, being composed of centrosymmetric fourteen-membered rings and nearly linear HgX2 (X = Cl, Br) moieties that are further inter-linked by weak HgX [HgCl = 2.930–3.136(9) Å, HgBr = 3.057–3.310(6) Å] and HgO [2.64, 2.75(3) Å] bonds to generate a two-dimensional polymeric network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号