首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report the synthesis and characterization of a series of alkoxy-substituted silylethynylated pentacene derivatives (R = CH(2)CH(2), CHCH, CH(2)). All three compounds are easily prepared, soluble in common organic solvents, and stable both as solids and in solution. Two of the derivatives possess significant pi-face interactions in the crystal. Values for lambda(max) for these new pentacene derivatives range from 621 to 674 nm, and oxidation potentials lie between 109 and 301 mV versus ferrocene.  相似文献   

2.
[structure: see text]. Halogen functional groups on pentacene can be used both as synthetic handles for further functionalization as well as to tune the pi-stacking in these systems. The halogenated pentacene derivatives described here (X = Br, X' = H, and X = X' = F) are all stable and soluble, with reduction potentials significantly lower than that of the parent functionalized pentacene (X = X' = H). The bromopentacenes could be further elucidated to pentacene nitriles, further decreasing the acene's reduction potential, while the charge-carrier mobility in the fluorinated systems was shown to scale with the degree of fluorine substitution.  相似文献   

3.
The excited‐state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited‐state characteristics of the derivatives.  相似文献   

4.
Theoretical studies of pentacene and a series of its derivatives were performed using the PM3 and DFT methods. Based on B3LYP/6-31G(d) optimized geometries, the electronic, IR, and 13C NMR spectra of the derivatives were calculated using the INDO/CIS, PM3, and B3LYP/6-31G(d) methods, respectively. The energy gaps of the derivatives decreased as the chain length increased and electron-withdrawing substituents were introduced. The polymer based on pentacene, especially in the presence of trimethylsilylacetylene, offers promise as an excellent conducting polymer. The main absorption bands in the electronic spectra of the derivatives compared with those of pentacene were shifted to the red, whereas the IR frequencies for some of the C=C and C-H bonds were shifted to the blue. The 13C chemical shifts of the carbon atoms connected with electron-withdrawing substituents were shifted upfield, while those of the bridged carbon atoms in the middle part of the pentacene unit shifted downfield.  相似文献   

5.
A new class of stabilized pentacene derivatives with externally fused five‐membered rings are prepared by means of a key palladium‐catalyzed cyclopentannulation step. The target compounds are synthesized by chemical manipulation of a partially saturated 6,13‐dibromopentacene precursor that can be fully aromatized in a final step through a DDQ‐mediated dehydrogenation reaction (DDQ=2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone). The new 1,2,8,9‐tetraaryldicyclopenta[fg,qr]pentacene derivatives have narrow energy gaps of circa 1.2 eV and behave as strong electron acceptors with lowest unoccupied molecular orbital energies between ?3.81 and ?3.90 eV. Photodegradation studies reveal the new compounds are more photostable than 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene).  相似文献   

6.
In recent years, due to its high hole-mobility, high on/off current ratio and low threshold voltage, pentacene and its derivatives have found increasing application in the fabrication of light-emitting diodes, field-effect transistors and photovoltaic cells. It has also emerged as an alternative to silicon due to its similar performance to inorganic semiconductors. Pentacene cannot be isolated from the petroleum fractions like other acenes such as anthracene or tetracene, and therefore it needs to be chemically synthesized. The first successful synthesis of pentacene was reported in early 19th century where pentacene was obtained via dehydrogenation of 6,14-dihydropentacene. Since then a number of methods have been reported for the synthesis of pentacene. This review describes various strategies used for the synthesis of pentacene and its derivatives reported since 2005.  相似文献   

7.
Density functional theory calculations were performed to explore the influence of halogenation on the reorganization energies (λ), adiabatic ionization potentials (IPs), adiabatic electron affinities (EAs), and air stabilities of a series of pentacene (PENT) and tetraceno[2,3-b]thiophene (TbTH) derivatives. According to calculated IP and EA values, all well-known PENT and TbTH derivatives in this paper are air-stable p-channel but not air-stable n-channel organic field-effect transistors (OFETs) due to insufficient EAs, consistent with experimental observations. The calculated results show that attaching two or more halogen atoms onto air-unstable 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene (TIPS-N4PENT) is sufficient for promoting ambipolar air-stable properties. The electronic coupling and band structure calculations indicate that halogenated TIPS-N4PENT derivatives have potential applications in high-performance ambipolar air-stable OFETs. They also provide rational guidelines for the design of ambipolar air-stable organic semiconductors (OSCs).  相似文献   

8.
Herein, the first hetero Diels–Alder (DA) reactions with a stable, dicationic urea azine derived azo dienophile, synthesized by two-electron oxidation of a neutral urea azine are reported. Several charged DA products were synthesized in good yield and fully characterized. The DA adduct of anthracene is in thermal equilibrium with the reactants at room temperature, and the reaction enthalpy and entropy were determined from the temperature-dependent equilibrium constant. Furthermore, base addition to solutions of the pentacene DA product led to deprotonation, cleavage of the N−N bond, and formation of an electron-rich 6,13-bisguanidinyl-substituted pentacene. The redox and optical properties of this new pentacene derivative were studied. Furthermore, the dication resulting from its two-electron oxidation was synthesized and fully characterized. The results disclose a new elegant route to electron-rich pentacene derivatives.  相似文献   

9.
Dilithiobutadienes prepared from diiodobutadienes reacted with diiodobenzene or diiodonaphthalene to afford substituted naphthalene, anthracene, dihydronaphthacene, and dihydropentacene derivatives in the presence of CuCl and DMPU. Dihydronaphthacene and dihydropentacene derivatives were converted into the corresponding naphthacene and pentacene derivatives.  相似文献   

10.
Functionalization of the pro-cata positions of pentacene with groups held perpendicular to the aromatic plane, in this case through a rigid 1,3-dioxole unit, yields pentacene derivatives that are stable and soluble, and still maintain edge-to-face interactions in the solid state.  相似文献   

11.
Pentacene derivatives substituted by aromatic groups at the 6,13-positions were prepared and investigated for their electronic properties and the photoaddition reaction with oxygen. The pentacene derivatives substituted by 2-thienyl and phenyl groups reacted with oxygen in solution under light and afforded their endoperoxides. These first-order kinetic constants were evaluated to be 1.5×10−3 s−1 and 2.7×10−3 s−1. The pentacene derivative with pentafluorophenyl groups was relatively stable in solution. The thermolysis and photolysis of the endoperoxide with 2-thienyl groups in solution afforded the pentacene derivative with yields of 30 and 44%, respectively. In addition, UV irradiation (254 nm) of the thin film of the endoperoxide was studied, which indicated the reproduction of the pentacene derivative.  相似文献   

12.
The theoretical work presented here demonstrates that, when substitution takes place at appropriate positions, cyanation could be a useful tool for reducing the internal reorganization energy of molecules. A molecular-orbital-based explanation is given for this fundamentally important phenomenon. Some of the cyanated pentacene derivatives (nCN-PENT-n) not only have internal reorganization energies for electron transfer (lambda(-)) smaller than that of pentacene, but the lambda(-) values are even of the same magnitude as the internal reorganization energy for hole transfer (lambda(+)) of pentacene, a small value that few organic compounds have surpassed. In addition, cyanation raises the electron affinity of the parent compound and may afford good electronic couplings between neighboring molecules, because of its ability in promoting pi-stacking. For the design of high performance n-Type Organic field-effect transistors, high electron affinities, large intermolecular electronic couplings, and small reorganization energies are necessary. Cyanation may help in all three aspects. Two cyanated trialkylsilylethynyl pentacene derivatives with known pi-stacking structures are predicted to provide reasonably small internal reorganization energies, large electronic couplings, and high electron affinities. They have the potential to outperform N-fluoroalkylated dicyanoperylene-3,4:9,10-bis(dicarboximides) (PDI-FCN(2)) in terms of electron mobility.  相似文献   

13.
Cu(I)-mediated reactions of zirconacyclopentadienes with fumaronitrile afforded the corresponding dicyanocyclohexadiene and benzonitrile derivatives in good yields. These products were selectively prepared by controlling the reaction temperature. Furthermore, the reaction was applicable for monocyano-substituted pentacene derivatives.  相似文献   

14.
We analyze the pentacene/Au(111) interface by means of density functional theory (DFT) calculations using a new hybrid functional; in our approach we introduce, in a local-orbital formulation of DFT, a hybrid exchange potential, and combine it with a calculation of the molecule charging energy to properly describe the transport energy gap of pentacene on Au(111). Van der Waals forces are taken into account to obtain the adsorption geometry. Interface dipole potentials are also calculated; it is shown that the metal/pentacene energy level alignment is determined by the potential induced by the charge transfer between the metal surface and the organic material, as described by the induced density of interface states model. Our results compare well with the experimental data.  相似文献   

15.
A series of 6,13‐diamino‐substituted pentacenes 1 a – d has been prepared and characterized as a new class of pentacene derivatives with strong donor ability and enhanced solubility in common organic solvents. The spectroelectrochemical and DFT studies revealed that the two‐electron oxidation process was accompanied by the substantial structural change into a butterfly‐like conformation of the pentacene moiety. More importantly, the extent of deformation from the planar pentacene moiety in the dications of 6,13‐diaminopentacene is tunable by varying the N‐substituents.  相似文献   

16.
Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V(-1) s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance.  相似文献   

17.
有机场效应晶体管(organic field—effect transistors,OFETs)是以有机半导体材料作为有源层,通过电场控制电流的电子器件.与传统的无机半导体器件相比,由于其可应用于生产大面积、柔性、低成本电子设备而备受关注,在有机存储器件、有机太阳能电池、柔性平板显示和电子纸等众多领域具有潜在而广泛的应用前景.并苯类材料因其紧密的分子堆积及优异的半导体性能被广泛研究.其中,并五苯及其衍生物在场效应晶体管中表现出良好的性质,其效果甚至可以与非晶硅相媲美,但并五苯较差的溶解性及环境稳定性阻碍了其进一步应用.科研工作者通过对分子结构进行修饰改造设计,合成了一系列并五苯的衍生物,其不仅在稳定性、电学性能和溶解性方面有很大提高,还可以将该p-型半导体材料拓展到双极性及n-型半导体材料领域.本文对并五苯及其衍生物在有机场效应晶体管中的应用进行了较为全面的综述,期望对该领域的研究起到一定的推动作用.  相似文献   

18.
In this work, a facile and versatile strategy for the synthesis of contorted polycyclic aromatic hydrocarbons (PAHs) starting from the functionalized pentacene was established. A series of novel PAHs 1 – 4 and their derivatives were synthesized through a simple two-step synthesis procedure involving an intramolecular reductive Friedel–Crafts cyclization of four newly synthesized pentacene aldehydes 5 – 8 as a key step. All the molecules were confirmed by single-crystal X-ray diffraction and their photophysical and electrochemical properties were studied in detail. Interestingly, the most striking feature of 1 – 4 is their highly contorted carbon structures and the accompanying helical chirality. In particular, the optical resolution of 2 was successfully achieved by chiral-phase HPLC, and the enantiomers were characterized by circular dichroism and circularly polarized luminescence spectroscopy. Despite the highly nonplanar conformations, these contorted PAHs exhibited emissive properties with moderate-to-good fluorescence quantum yields, implying the potential utility of this series PAHs as high-quality organic laser dyes. By using a self-assembly method with the help of epoxy resin, a bottle microlaser based on 3 a was successfully illustrated with a lasing wavelength of 567.8 nm at a threshold of 0.3 mJ/cm2. We believe that this work will shed light on the chemical versatility of pentacene and its derivatives in the construction of novel functionalized PAHs.  相似文献   

19.
A series of 1,2,3,4,8,9,10,11‐octasubstituted pentacenequinone derivatives were prepared by the oxidation of 1,2,3,4,8,9,10,11‐octasubstituted pentacenes, which were synthesized by the double homologation method. Oxidation of the pentacenes was carried out with H5IO6 or air and DDQ. These octasubstituted pentacenequinones were converted into 1,2,3,4,6,8,9,10,11,13‐decasubstituted or 2,3,6,9,10,13‐hexasubstituted pentacene derivatives by the introduction of aryl or alkynyl groups at the carbonyl carbons. The photophysical properties of these new pentacenes have been measured in solution, and the substituent effects are discussed.  相似文献   

20.
This paper describes the reactivity of unsymmetrically substituted pentacenes to photochemical oxidation. Acenes in general, and pentacenes in particular, are a key family of compounds for a variety of organic electronics applications. The instability of many pentacene derivatives, particularly to oxidation, is an important restriction in their applicability. Several substitution strategies for decreasing the reactivity of pentacene exist, but these almost always involve symmetrically substituted derivatives, restricting the chemical space of structures from which to choose. In this paper, we demonstrate that combining electronic and steric effects yields highly stable unsymmetrically substituted pentacenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号