首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optical properties of Tm-doped GaSe single crystals were investigated by measurements of optical absorption and photoluminescence. The single crystals were grown by the Bridgman technique. The X-ray diffraction analysis revealed that the single crystals were in the ε-type GaSe phase. The optical absorption spectra showed a sharp absorption peak at 582 nm near the band edge, which is due to direct free exciton. The temperature dependence of the energy of the exciton absorption peak was well fitted by the Varshni relation. In the photoluminescence spectrum at 10 K, we observed a very weak emission peak at 586 nm, a relatively strong emission peak centered at 613 nm, and several sharp and narrow emission peaks in the 790-840 nm region. The two emission peaks at 586 and 613 nm were associated with intrinsic emission lines due to direct free exciton and indirect bound exciton. The emission peaks in the 790-840 nm region, which were related to extrinsic emission, were assigned as due to the 3F43H6 transition of Tm3+ ions with a low symmetry of D3 in the host lattice.  相似文献   

2.
3.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

4.
Surfaces of GaN films were investigated by atomic force microscopy (AFM) with implemented piezoelectric force microscopy technique. A model of PFM based on the surface depletion region in GaN films is discussed. The local piezoelectric effect of the low frequency regime was found to be in phase with the applied voltage on large domains, corresponding to a Ga-face of the GaN layer. Low piezoresponse is obtained within the inter-domain regions. The use of frequencies near a resonance frequency enhances very much the resolution of piezo-imaging, but only for very low scanning speed the piezo-imaging can follow the local piezoelectric effect. An inversion of the PFM image contrast is obtained for frequencies higher than the resonance frequencies. The effect of a chemical surface treatment on the topography and the piezoresponse of the GaN films was also investigated. Textured surfaces with very small domains were observed after the chemical treatment. For this kind of surfaces, piezo-induced torsion rather than bending of the AFM cantilever dominates the contrast of the PFM images. A small memory effect was observed, and explained by surface charging and confinement of the piezoelectric effect within the carrier depletion region at the GaN surface.  相似文献   

5.
The composition and morphology of fluorinated anodic oxide (FAO) films grown on InAs (1 1 1)A in alkaline aqueous (pH 11.5) and acid waterless (pH 1.5) electrolytes are studied by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) in order to reveal the passivation mechanism of fluorine on the FAO/InAs(1 1 1)A interface. The formation of the highest oxidation form of As+5 and passivation of defects in the FAO layers during the fluorination process explain the reduction of the density of surface states and unpinning of the Fermi level on the fluorinated AO/InAs(1 1 1)A interface.  相似文献   

6.
The structure of the n=4 Aurivillius oxide BaBi4Ti4O15 has been studied at room temperature using powder neutron diffraction, and from 300 to 1000 K using synchrotron X-ray diffraction methods. The structure is orthorhombic (space group A21am) at 300 K and transforms to a tetragonal (I4/mmm) structure near 700 K.  相似文献   

7.
The silicon carbide (SiC) surface is more complex than that of silicon and can be carbon-terminated or silicon-terminated, and can exist as several reconstructions. Investigations of the surface structure as a function of temperature, under ultrahigh vacuum (UHV) conditions using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED), are presented. The 4H-SiC surface can be passivated using a silicon deposition/evaporation technique to reconstruct the surface. This has a significant effect on the electrical behaviour of metal contacts to the silicon carbide surface, critical in any electronic device. Atomic resolution STM studies of the 4H-SiC surface have revealed step features and micropipe defects in unprecedented detail. STM has also been used to image clusters of metal deposited on the 4H-SiC surface. The effect of annealing on the behaviour of these nickel clusters is also presented. The surface of the silicon carbide is extremely important in the fabrication of silicon carbide electronic devices and this paper presents a discussion of the SiC surface with particular reference to its impact on SiC device applications in power electronics.  相似文献   

8.
Novel ultra-long ZnO nanorods, with lengths about 0.5-1.5 mm and diameters ranging from 100 to 1000 nm, in mass production have been synthesized via the vapor-phase transport method with CuO catalyst at 900 °C. Rectifying Schottky barrier diodes have been fabricated by aligning a single ultra-long ZnO nanorod across paired Ag electrodes. The resulting current-voltage (I-V) characteristics of the SBD exhibit a clear rectifying behavior. The ideality factor of the diode is about 4.6, and the threshold voltage is about 0.54 V at room temperature (300 K). At the same time the detailed I-V characteristics have been investigated in the temperature range 423-523 K. In addition, after exposure of the Schottky diodes to NH3, the forward and reverse currents increase rapidly, indicating a high sensitivity to NH3 gas.  相似文献   

9.
The general equation Tove = L cos  θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.  相似文献   

10.
In this paper, we report on the characteristics of GaN films grown on Si(111) at a low temperature (200 °C) by electron cyclotron resonance (ECR) plasma-assisted metalorganic chemical vapor deposition (PA-MOCVD). Structural analysis of the GaN films was performed by using scanning electron microscopy (SEM), atomic force miscroscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), and Rutherford backscattering spectrometry (RBS). Post deposition analysis revealed high quality crystalline GaN was obtained at this low temperature. Electrical analysis of the GaN films was done by using current-voltage (I-V) measurements where electrical characterizations were carried on GaN/Si heterojunction and Schottky barrier diodes. Rectification behaviour was observed for the isotype GaN/Si (n-n) heterojunction. Ideality factors and Schottky barrier heights for Ni and Cr Schottky barriers on GaN, were deduced to be 1.4 and 1.7; and 0.62 and 0.64 eV, respectively.  相似文献   

11.
Laser irradiation at 157 nm of polymethylmethacrylate (PMMA) thin films induces major variations of polymer film thicknesses from sorption (absorption/desorption) of methanol and ethanol analytes in the gas phase as much as 400%, in comparison to the film thickness variation of the non-irradiated areas. The structural changes of irradiated areas involve scission of polymeric chains, cross-linking and formation of new bonds. In addition, 157 nm induces surface and volume morphological changes in the nano/micro domain, with different shapes, depending on the irradiation conditions. The reversibility of the sorption processes suggests that the polymer swelling has its origin at the tendency of the system to increase its volume during sorption. The internal forces from sorption are higher than the weak dipole interactions between the polymer and the analytes and they are amplified following 157 nm irradiation. A simple qualitative model explains adequately the experimental results. 157 nm laser treatment forms the basis to engineer a novel class of polymer sensor arrays with enhanced detection efficiency of liquid/gas analytes.  相似文献   

12.
Pd-induced surface structures on Si(1 1 3) have been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In the initial process of the Pd adsorption below 0.10 ML, Pd silicide (Pd2Si) clusters are observed to form randomly on the surface. By increasing the Pd coverage to 0.10 ML, the clusters cover the entire surface, and an amorphous layer is formed. After annealing the Si(1 1 3)-Pd surface at 600 °C, various types of islands and chain protrusions appears. The agglomeration, coalescence and crystallization of these islands are observed by using high temperature (HT-) STM. It is also found by XPS that the islands correspond to Pd2Si structure. On the basis of these results, evolution of Pd-induced structures at high temperatures is in detail discussed.  相似文献   

13.
Single-phase layered nanocomposite containing 4Hb-TaS2 and poly(ethylene oxide) [PEO] has been first synthesized by using the exfoliation-adsorption technique. It has been characterized by powder X-ray diffraction (XRD) and electrical dc resistivity measurements. As the product exhibited lattice expansions along the stacking direction, PEO was intercalated into 4Hb-TaS2 galleries.  相似文献   

14.
The influence of oxygen on the development of carbon nanotubes (CNTs) during the annealing process of the surface decomposition method on SiC(000−1) surfaces was investigated. In the case of annealing a SiC substrate under ultra-high vacuum conditions, carbon nanofibers (CNFs) form between the CNT layer and the substrate. However, CNTs form without CNFs by annealing the substrate in an oxygen atmosphere. The mean length of CNTs is longer than those formed without an oxygen atmosphere. From cross-sectional transmission electron microscopy images, it was found that oxygen plays an important role in CNT growth by the surface composition method.  相似文献   

15.
A study of the long-range, local and electronic structure of Nd0.5Sr0.5MnO3 films of varying thickness between 500 and 2000 Å has been performed. Local structure measurements at the Sr K-edge reveal a reduction of the Mn-O-Mn bond angles in films below 1000 Å. Spin-polarized measurements reveal splitting of the Mn 3d eg state in the strained region of the films and are consistent with a two-layer model for thick films with a relaxed undistorted layer on top of a strained structurally distorted layer near the substrate.  相似文献   

16.
Langmuir-Blodgett technique has been used for the deposition of ordered two-dimensional arrays of iron oxides (Fe3O4/Fe2O3) nanoparticles onto the photovoltaic hydrogenated amorphous silicon (a-Si:H) thin film. Electric field at the a-Si:H/iron oxides nanoparticles interface was directly in the electrochemical cell modified by light soaking and bias voltage (negative or positive) pretreatment resulting in the change of the dominant type of charged deep states in the a-Si:H layer. Induced reversible changes in the nanoparticle redox behavior have been observed. We suggest two possible explanations of the data obtained, both of them are needed to describe measured electrochemical signals. The first one consists in the electrocatalytical effect caused by the defect states (negatively or positively charged) in the a-Si:H layer. The second one consists in the possibility to manipulate the nanoparticle cores in the prepared structure immersed in aqueous solution via the laser irradiation under specific bias voltage. In this case, the nanoparticle cores are assumed to be covered with surface clusters of heterovalent complexes created onto the surface regions with prevailing ferrous or ferric valency. Immersed in the high viscosity surrounding composed of the wet organic nanoparticle envelope these cores are able to perform a field-assisted pivotal motion. The local electric field induced by the deep states in the a-Si:H layer stabilizes their “orientation ordering” in an energetically favourable position.  相似文献   

17.
In this paper a comparative study of different wet-chemical etching procedures of vicinal Si(1 1 1) surface passivation is presented. The stability against oxidation under ambient atmosphere was studied by X-ray photoelectron spectroscopy and atomic force microscopy. The best results were achieved by the buffered HF etching and the final smoothing of the surface by hot (72 °C) NH4F. The procedures consisting of a large number of etching steps were unsatisfactory, since the probability of contamination during each step was increasing. The passivated surface was stable against oxidation for at least 3 h under ambient atmosphere.  相似文献   

18.
Transparent conductive oxide (TCO) thin films play a significant role in recent optical technologies. Displays of various types, photovoltaic systems, and opto-electronic devices use these films as transparent signal electrodes. They are used as heating surfaces and active control layers. Oxides of TCO materials such as: tin, indium, zinc, cadmium, titanium and the like, exhibit their properties. However, indium oxide and indium oxide doped with tin (ITO) coatings are the most used in this technology.In this work, we present conductive transparent indium oxide thin films which were prepared using a novel triode sputtering method. A pure In2O3 target of 2 in. in diameter was used in a laboratory triode sputtering system. This system provided plane plasma discharge at a relatively low pressure 0.5-5 mTorr of pure argon. The substrate temperature was varied during the experiments from room temperature up to 200 °C. The films were deposited on glass, silicon, and flexible polyimide substrates. The films were characterized for optical and electrical properties and compared with the indium oxide films deposited by magnetron sputtering.  相似文献   

19.
Thin films of antimony doped tin oxide (SnO2:Sb) were prepared by spray pyrolysis technique using SnCl2 as precursor with the various antimony doping levels ranging from 1 to 4 wt%. The XRD analysis showed that the undoped SnO2 films grow in (211) preferred orientation whereas the Sb doped films grow in (200) plane. Scanning electron microscopy studies indicated that the surface of the films prepared with lower doping level (1 wt%) consists of larger grains whereas those prepared with higher doping levels (>1 wt%) consist of smaller grains. The sheet resistance has been found to be reduced considerably (2.17 Ω/□) for Sb doped films. To the best of our knowledge this is the lowest sheet resistance obtained for Sb doped SnO2 thin films.  相似文献   

20.
Al-doped ZnO (ZnO:Al) films prepared by RF magnetron co-sputtering at room temperature were thermally treated in hydrogen ambient at 300 °C to enhance the films’ characteristics for transparent conductive oxide applications. The electrical properties of the hydrogen-annealed films were improved and preserved in air ambient, even though the crystal structures of the films were not changed by the thermal treatment. The optical and oxygen bonding characteristics of ZnO:Al films manifested that absorbed oxygen species on the films were removed by the hydrogen-annealing process. These results supported that the development of the electrically reliable ZnO:Al films could be realized using the hydrogen-annealing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号