首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroless Ni-P and Ni-Co-P deposits were obtained on Al substrate. Their surface morphology, microstructure and composition were analyzed using SEM and XRD. Their corrosion resistance was characterized by anodic polarization curves. Based on the measurement of the thickness, electrical conductivity and magnetic conductivity of the deposits, their electromagnetic shielding effect values were calculated and the influence of cobalt on the corrosion and electromagnetic shielding properties of Ni-Co-P deposits was revealed. The results showed that cobalt improved the corrosion resistance and greatly enhanced the electromagnetic shielding property of Ni-Co-P deposits. Electroless Ni-Co-P deposits on Al substrate would impart the product with high corrosion resistance, good electromagnetic shielding effect and light weight.  相似文献   

2.
The electroless Ni-Co-P films were deposited on Fe film in plating baths using sodium hypophosphite as reducing agent and nickel and cobalt sulphates as ion source at pH value of 9 and plating temperature from 60 to 85 °C. The effect of the mol ratio of CoSO4/CoSO4 + NiSO4 in plating bath on the growth behavior of electroless Ni-Co-P films was studied. The electroless Ni-Co-P films were characterized by transmission electron microscopy for the microstructure and thickness, and energy dispersive spectrometer for the composition. The results showed that the electroless Ni-Co-P films can be deposited on Fe films without the step of sensitization and activization; the surface of electroless Ni-Co-P film on Fe is quite even; the more the Co2+ ion in plating bath, the larger the activation energy and the smaller the plating rate of electroless Ni-Co-P films; and the mol ratio of Co/Co + Ni in film is larger than that in plating bath (with the exception of the film deposited in the bath with 0.9 mol ratio of CoSO4/CoSO4 + NiSO4)  相似文献   

3.
In this work the small amounts of NiSO4 was added to a basic electroless plating bath of CoSO4 with Na2H2PO2 as reducing agent for the deposition of Co-Ni-P film on a silicon substrate. The initial growth behavior, containing plating rate, chemical composition, crystal structure, surface morphology and micro-structure, of the electroless plating film was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the growth morphology variation of the Co-Ni-P films deposited in the basic CoSO4 + small amounts of NiSO4 bath is the same as that of Co-P film deposited in the basic CoSO4 bath, the plating rate of the Co-Ni-P film is much more rapid than that of the Co-P film, the Ni/Co wt.% in the Co-Ni-P film is greatly larger than that in the plating bath, and the structure of as-deposited film is crystalline at first stage and later stage.  相似文献   

4.
Epitaxial thin films of the conductive ferromagnetic oxide SrRuO3 were grown on an (0 0 1) SrTiO3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (0 0 1) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [1 0 0]S and [0 0 1]S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [0 0 1]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ0H=9 T; T)−ρ( μ0H=0 T; T)]/ρ( μ0H=0 T; T) on the order of a few percent, with maximums of 6% and 4% (right at the Curie temperature, TC 160 K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T<30 K) are similar to those obtained on SrRuO3 films grown on 2° miscut (0 0 1) STO substrates with the current parallel to the field and parallel to the direction, which was identified as the easier axis for magnetization.  相似文献   

5.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   

6.
Room temperature soft chemical deposition route has been utilized to grow thin films of ZnO on glass substrate. Annealing at 673 K removed zinc hydroxide phase and nanofibrous ZnO films with wurtzite crystal structure were obtained. Decrease in the room temperature electrical resistivity from 107 to 104 Ω cm was observed after annealing. The nanofibrous ZnO thin films were sensitive to the explosive liquefied petroleum gas (LPG) and the maximum response of 17% at 698 K under the exposure of 6500 ppm of LPG was obtained.  相似文献   

7.
Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600–900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3–5 μm and 8–14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.  相似文献   

8.
In this paper we report molecular dynamics based atomistic simulations of deposition process of Al atoms onto Cu substrate and following nanoindentation process on that nanostructured material. Effects of incident energy on the morphology of deposited thin film and mechanical property of this nanostructured material are emphasized. The results reveal that the morphology of growing film is layer-by-layer-like at incident energy of 0.1-10 eV. The epitaxy mode of film growth is observed at incident energy below 1 eV, but film-mixing mode commences when incident energy increase to 10 eV accompanying with increased disorder of film structure, which improves quality of deposited thin film. Following indentation studies indicate deposited thin films pose lower stiffness than single crystal Al due to considerable amount of defects existed in them, but Cu substrate is strengthened by the interface generated from lattice mismatch between deposited Al thin film and Cu substrate.  相似文献   

9.
In this paper we present the effect of low substrate temperature on structural, morphological, magnetic and optical properties of Ba-hexaferrite thin films. Films were deposited on single crystal Silicon (1 0 0) substrate employing the Pulsed Laser Deposition (PLD) technique. The structural, morphological, magnetic and optical properties are found to be strongly dependent on substrate temperature. The low substrate temperatures (room temperature to 200 °C) restrict the formation of larger grains. For the higher substrate temperature i.e., 400 °C, the grain size of the deposited thin film are much larger. The film grown at low substrate temperature do not show any anisotropy. As the substrate temperature is increased, the easy axis of the films alinged itself in the direction parallel to the film plane whereas the hard axis remained in the perpendicular direction. The higher substrate temperature caused the uniaxial magnetic anisotropy, which is very important in magnetic recording devices. The saturation magnetization and optical band gap energy values of 62 emu/cc and 1.75 eV, respectively, were achieved for the film of thickness 500 nm deposited at 400 °C. Higher values of coercivity, squareness and films thickness are associated with the growth of larger grains at higher substrate temperature.  相似文献   

10.
黄晓玉  程新路  徐嘉靖  吴卫东 《物理学报》2012,61(1):16805-016805
利用分子动力学方法模拟了Al原子在Pb基底上的沉积过程. 对Al原子在Pb基底(001)面上沉积的形态与Pb原子在Al(001)基底上沉积的形态做了比较. 由于界面间势垒的不同, 两个体系界面间的形态有明显的差异. 分析了基底温度、基底晶面指向、沉积原子的入射动能对界面间原子混合的影响. 模拟结果显示: 随着基底温度升高, 基底原子的可移动性大大增加, 与沉积原子发生较大程度的混合; 入射能的改变对界面间原子的混合影响很小; 基底表面取不同的晶格指向时, 基底与沉积原子间的混合行为也有明显的不同. 利用径向分布函数分析了沉积原子的入射能对薄膜中原子排列有序性的影响. 较高入射能对应更有序的薄膜结构; 由径向分布函数的结构可以推测Al原子在Pb(001)基底表面沉积时界面间可能有金属间化合物生成. 关键词: Pb/Al体系 沉积过程 分子动力学 入射能  相似文献   

11.
Ni-Mn-Ga thin films have been fabricated by using magnetron sputtering technique under various substrate negative bias voltages. The effect of substrate negative bias voltage on the compositions and surface morphology of Ni-Mn-Ga thin films was systematically investigated by energy dispersive X-ray spectrum and atomic force microscopy, respectively. The results show that the Ni contents of the thin films increase with the increase of the substrate negative bias voltages, whereas the Mn contents and Ga contents decrease with the increase of substrate negative bias voltages. It was also found that the surface roughness and average particle size of the thin films remarkably decrease with the increase of substrate negative bias voltages. Based on the influence of bias voltages on film compositions, a Ni56Mn27Ga17 thin film was obtained at the substrate negative bias voltage of 30 V. Further investigations indicate that the martensitic transformation start temperature of this film is up to 584 K, much higher than room temperature, and the film has a non-modulated tetragonal martensitic structure at room temperature. Transmission electron microscopy observations reveal that microstructure of the thin film exhibits an internally (1 1 1) type twinned substructure. The fabrication of Ni56Mn27Ga17 high-temperature shape memory alloy thin film will contribute to the successful development of microactuators.  相似文献   

12.
A Ni54Mn25.7Ga20.3 ferromagnetic shape memory alloy thin film has been fabricated by using the RF magnetron-sputtering technique. The structure and magnetic properties of the film were systematically investigated. The results show that the film is in ferromagnetic martensite state at room temperature with the Curie temperature (Tc) of about 370 K. The saturation magnetization (Ms) of the film reaches 45 emu/g at 300 K, which is about 80% as large as that of Ni–Mn–Ga bulk material. The magnetization hysteresis loops significantly depend on temperatures. The residual magnetization (Mr) and the coercive force (Hc) increase with decreasing temperatures. The grains homogeneously distribute in the film. The microstructure of the film consists of martensite plates. The interface between the martensite variants is clear and straight, indicating a good mobility.  相似文献   

13.
Copper thin film on silane modified poly(ethylene terephthalate) (PET) substrate was fabricated by ultrasonic-assisted electroless deposition. The composition and topography of copper plating PET films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Peel adhesion strength, as high as 16.7 N/cm, was achieved for the planting copper layer to the modified PET substrate with ultrasonic-assisted deposition; however, a relative low value as 11.9 N/cm was obtained for the sample without ultrasonic vibration by the same measurement. The electrical conductivity of Cu film was changed from 7.9 × 104 to 2.1 × 105 S/cm by using ultrasonic technique. Ultrasonic operation has the significant merits of fast deposition and formation of good membranes for electroless deposition of Cu on PET film.  相似文献   

14.
Studies of the porosity in electroless nickel deposits on magnesium alloy   总被引:3,自引:0,他引:3  
In the present paper, the porosity of the plating coating was evaluated by the combination of corrodkote and filter paper, the effects of the plating solution on the porosity were investigated, and the properties of the porous coatings were studied through scanning electron microscopy (SEM) and electrochemical potentiodynamic polarization. The results show that the eriothrome black T indicator used as an indicator of the coating porosity for coatings on magnesium alloy is more effective than magneson indicator and sodium alizarinesulfonate indicator. The porosity in electroless nickel deposits on magnesium alloy was well evaluated by the combination of corrodkote and filter paper. It is revealed that the pores exist on both grain surface and grain boundaries. An affecting trend of the plating bath parameters on the coating porosity was obtained.  相似文献   

15.
Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.  相似文献   

16.
A theoretical model is presented for the study of the magnetic properties and the coherent magnon transport via monatomic chains in ultrathin magnetic films. In particular, we studied a finite number of monatomic chains joining two slabs of ferromagnetic material. Each slab consists of five atomic layers of a cubic lattice with magnetically ordered spins coupled by the Heisenberg exchange. The system is supported on a non-magnetic substrate and otherwise considered free from magnetic interactions. The spin dynamics of the ultrathin film is studied by the matching method. The individual and the total magnon transmissions of the ultrathin ferromagnetic film, scattering coherently at the nanojunction zone, and the localized spin states in the boundary domain are calculated and analyzed. The interatomic magnetic exchange is varied on the boundary domain specifically for three cases of magnetic exchange to investigate the consequences of magnetic softening and hardening for the calculated properties. Numerical results show characteristic interference effects between the incident spinwaves and the localized spin states of the nanocontact. The calculated properties are presented for arbitrary incidence of the magnons on the boundary, for all accessible frequencies in the propagating bands, and for the interatomic magnetic exchange of the magnetic film. The localized magnon branches created by the nanocontact domain are observed in the Brillouin zone.  相似文献   

17.
In this study, a low-cost technique, energy dispersive spectroscopy (EDS), was used to explore the application of X-ray microanalysis in depth determination of metallic films. Al, Ni and Au films with varied thicknesses from 50 to 400 nm were deposited on silicon (Si) substrates by magnetron sputtering. Electron beam energies ranging from 4 to 30 keV were applied while other parameters were kept constant to determine the electron beam energy required to penetrate the films. The effect of the atomic number of the metallic films on the penetration capability of the electron beam was investigated. Based on the experimental results, mathematical models for Al, Ni and Au films were established and the interaction volume was simulated using a Monte Carlo program. The simulations are in good agreement with the experimental results. Al/Ni/Au multilayers were also studied.  相似文献   

18.
Magnetoelectric (ME) Ni-lead zirconate titanate-Ni laminated composites have been prepared by electroless deposition at various bath temperatures. The structure of the Ni layers deposited at various bath temperatures was characterized by X-ray diffraction, and microstructures were investigated by transmission electron microscopy. The magnetostrictive coefficients were measured by means of a resistance strain gauge. The transverse ME voltage coefficient αE,31 was measured with the magnetic field applied parallel to the sample plane. The deposition rate of Ni increases with bath temperature. Ni layer with smaller grain size is obtained at higher bath temperature and shows higher piezomagnetic coefficient, promoting the ME effect of corresponding laminated composites. It is advantageous to increase the bath temperature, while trying to avoid the breaking of bath constituents.  相似文献   

19.
In this study, the microstructural variation and nano-indention of Al-5.7Zn-2.4Mg-1.5Cu (AZMC) thin film was investigated using DC electrical current at a density of 1000 A/cm2. The results show that microstructural changes due to the electrical current involved both the solid solubility effect and enhanced diffusion. The electrical current drove the Al atoms and Cu atoms of the matrix from the cathode to the anode. After electrical current testing, precipitation phases (Al2Cu; CuMgAl2) had decomposed into the cathode matrix and MgZn phases had grown in the anode zones. Meanwhile, the current also caused the hardness of the thin film to decrease and affected both the texture and dynamic strain mechanism of nano-indention.  相似文献   

20.
Nanocrystalline ZnO:Al thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 450 °C to study their crystalline structure, composition, strain, stress, roughness characteristics and nonlinear optical susceptibility as a function of Al concentration (0, 2, 3, 5 at.%). The films were characterized by X-ray diffractometer (XRD), EDAX 9100 analyser, atomic force microscopy (AFM) and third harmonic generation (THG). The Al (3 at.%) doped ZnO thin films exhibited the lower strain/stress than undoped films. The nonlinear properties of the ZnO:Al thin films have been found to be influenced by the films strain/stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号