首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel supramolecular architectures were built around a tin tetraphenyl porphyrin platform 6--functionalized by a 2-fold 1-ethyl-3-3-(3-dimethylaminopropyl)carbodiimide (EDC) promoted condensation reaction--and chiral depsipeptide dendrons of different generations 1-4. Here, implementation of a Hamilton receptor provided the necessary means to keep the constituents together via strong hydrogen bonding. Characterization of all architectures has been performed, including 4 which is the fourth generation, on the basis of NMR and photophysical methods. In particular, several titration experiments were conducted suggesting positive cooperativity, an assessment that is based on association constants that tend to be higher for the second binding step than for the first step. Importantly, molecular modeling calculations reveal a significant deaggregation of the intermolecular network of 6 during the course of the first binding step. As a consequence, an improved accessibility of the second Hamilton receptor unit in 6 emerges and, in turn, facilitates the higher association constants. The features of the equilibrium, that is, the dynamic exchange of depsipeptide dendrons 1-4 with fullerene 5, was tested in photophysical reference experiments. These steady-state and time-resolved measurements showed the tunable excited-state deactivations of these complexes upon photoexcitation.  相似文献   

2.
We have prepared a series of chiral dendrons (1-4) in which chiral subunits are placed in individual generational shells at varying distances from the focal point. The optical activity of these chiral dendritic structures is successfully modeled using structurally similar low-molecular weight model compounds. In dendrons 1a and 1b a chiral subunit is directly adjacent to the focal point, whereas in dendrons 2, 3, and 4a,b the chiral subunits are incorporated in the interior of the dendron. A marked difference in optical activity between the former 1a and 1b) and latter (2, 3, 4a,b) dendrons is mirrored in the optical activities of model compounds 12a, 12b, 19a, and 19b. These model compounds directly mimic the surrounding constitution of the chiral subunits in the dendrons. This successful analysis of the chiroptical data using low-molecular weight model compounds suggests that these dendrons do not possess conformational order in solution.  相似文献   

3.
4.
New chiral, soluble binaphthyl derivatives that incorporate stilbenoid dendrons at the 6,6'-positions have been prepared. The synthesis of the new enantiopure dendrimers was performed in a convergent manner by Horner-Wadsworth-Emmons (HWE) reaction of the appropriately functionalized 1,1'-binaphthyl derivative (R)-1 and the appropriate dendrons (R)(2n)G(n)-CHO. Different electroactive units were incorporated in the peripheral positions of the dendrons in order to tune both the optical and electrochemical behavior of these systems. Fluorescence measurements on the chiral dendrimers reveal a strong emission with maxima between 409 and 508 nm depending upon the substitution pattern. Finally, the redox properties of the dendrimers were determined by cyclic voltammetry, showing the influence of the functional groups at the peripheral positions of the dendrimer on the redox behavior of these systems.  相似文献   

5.
The synthesis of dendritic building blocks (dendrons) of the first generation (G1) and the second generation, which carry differently protected amine groups in the periphery, is reported. The dendrons are used for the synthesis of the corresponding acrylic and methacrylic macromonomers. Their polymerization behavior under radical conditions is investigated. The G1 dendronized polymers are decorated at their peripheral amino groups, that is, with the chiral amino acid L -phenylalanine by the attach-to approach. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1940–1954, 2001  相似文献   

6.
Lisowski J 《Inorganic chemistry》2011,50(12):5567-5576
The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no heterochiral, heterodinuclear complexes [Ln(1)L(RRRR)Ln(2)L(SSSS)(μ-OH)(2)X(2)](n+) are formed in the reactions of two different mononuclear complexes of opposite chirality.  相似文献   

7.
A library of G1-G3 alpha-amino acid based layer-block dendrons 1-6 containing different amino acid residues in the different concentric layers was prepared by solution-phase peptide synthesis. The structures of these dendrons were characterized by 1H and 13C NMR spectroscopy and, except for the G3 series of compounds, by mass spectrometry. The purities of these compounds were also determined by size-exclusion chromatography. Owing to the presence of a large number of amide groups, these dendrons exhibit unusually strong self-aggregating properties in both polar and nonpolar solvents. Some of these dendrons are found to be extremely good organogelators towards aromatic solvents with minimum gel concentrations approaching 4 mg mL(-1). Their gelation ability is found to be highly dependent on the nature of the amino acid compositions, the amino acid layer-block sequence within the dendritic architecture and the nature of the focal-point functionality. IR spectroscopic analysis indicates that gelation is induced by intermolecular hydrogen bonds. Circular dichroism studies suggest the formation of hierarchical chiral structures in the gel state, although the existence of chiral morphologies could not be observed by scanning electron microscopy.  相似文献   

8.
报道了树状结构的手性联二萘酚(BINOL)配体的合成及其在二乙基锌对醛的不对称加成反应中的应用.(R)-2,2′-二羟基-1,1′-联萘-3,3′-二羧酸与末端为氨基的Frechet聚芳醚型树状分子经缩合反应,以中等产率得到0~3代的树状分子配体,用1HNMR,IR和MALDI-TOF质谱进行了结构表征.这些树状手性配体与Ti(OPri)4在无水甲苯溶液中形成的配合物是二乙基锌对醛不对称加成反应的高效催化剂,树状分子载体的体积对催化剂的对映选择性没有明显的影响.以邻氯苯甲醛为底物时,反应的对映选择性随树状分子代数的增加而有所提高.  相似文献   

9.
Molecular recognition of representative amino acids (A) by a chiral amido[4]resorcinarene receptor (1(L)) was investigated in the gas phase by ESI-FT-ICR mass spectrometry. The ligand displacement reaction between noncovalent diastereomeric [1(L).H.A](+) complexes and the 2-aminobutane enantiomers (B) exhibits a distinct enantioselectivity with regard to both the leaving amino acid A and the amine reactant B. The emerging selectivity picture, discussed in the light of molecular mechanics and molecular dynamics calculations, points to chiral recognition by 1(L), as determined by the effects of the host asymmetric frame on the structure, stability, and rearrangement dynamics of the diastereomeric [1(L).H.A](+) complexes and the orientation of the amine reactant B in encounters with [1(L).H.A](+). The results contribute to the development of a dynamic model of chiral recognition of biomolecules by enzyme mimics in the unsolvated state.  相似文献   

10.
The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures.  相似文献   

11.
Synthesis of seven complexes containing oxazoline ([(L(1))(2)V=O] (4), [(L(1))(2)MoO(2)] (5), [(L(1))(2)UO(2)] (6); HL(1) (1) [HL(1) = 2-(4',4'-dimethyl-3'-4'-dihydroxazol-2'-yl)phenol]), chiral oxazoline ([(L(2))(2)UO(2)] (7); HL(2) (2) [HL(2) = (4'R)-2-(4'-ethyl-3'4'-dihyroxazol-2'-yl)phenol]), and oxazine ([(L(3))(2)V=O] (8), [(L(3))(2)Mn(CH(3)COO(-))] (9), [(L(3))(2)Co] (10); HL(3) (3) [HL(3) = 2-(5,6-dihydro-4H-1,3-oxazolinyl)phenol]) and their characterization by various techniques such as UV-vis, IR, and EPR spectroscopy, mass spectrometry, cyclic voltammetry, and elemental analysis are reported. The novel oxazine (3) and complexes 4, 5, 8 and 9 were also characterized by X-ray crystallography. Oxazine 3 crystallizes in the monoclinic system with the P2(1)/n space group, complexes 4 and 9 crystallize in the monoclinic system with the P2(1)/c space group, and complexes 5 and 8 crystallize in the orthorhombic system with the C222(1) space group and the P2(1)2(1)2(1) chiral space group, respectively. The representative synthetic procedure involves the reaction of metal acetate or acetylacetonate derivatives with corresponding ligand in ethanol. Addition of Mn(OAc)(2).4H(2)O to an ethanol solution of 3 gave the unexpected complex Mn(L(3))(2).(CH(3)COO(-)) (9) where the acetate group is coordinated with the metal center in a bidentate fashion. The catalytic activity of complexes 4-9 for oxidation of styrene with tert-butyl hydroperoxide was tested. In all cases, benzaldehyde formed exclusively as the oxidation product.  相似文献   

12.
We discovered that ultrafast cyclopolymerization of 1,6-heptadiyne derivatives reached completion in 1 min using a third-generation Grubbs catalyst. After optimization, this superior catalyst selectively produced conjugated polymers having a five-membered-ring structure with excellent molecular weight control and narrow polydispersity index (PDI). This living polymerization allowed us to prepare fully conjugated diblock copolymers with narrow PDIs. Lastly, this catalyst was active enough to polymerize macromonomers with G-3 dendrons in a living manner as well. This dendronized polymer with a highly regioregular polymer backbone and bulky dendrons was visualized by atomic force microscopy, which revealed the structure of a single molecular wire surrounded by insulating dendrons.  相似文献   

13.
Novel liquid crystal (LC) dendrimers have been synthesised by hydrogen bonding between an s‐triazine as the central core and three peripheral dendrons derived from bis(hydroxymethyl)propionic acid. Symmetric acid dendrons bearing achiral promesogenic units have been synthesised to obtain 3:1 complexes with triazine that exhibit LC properties. Asymmetric dendrons that combine the achiral promesogenic unit and an active moiety derived from coumarin or pyrene structures have been synthesised in order to obtain dendrimers with photophysical and electrochemical properties. The formation of the complexes was confirmed by IR and NMR spectroscopy data. The liquid crystalline properties were investigated by differential scanning calorimetry, polarising optical microscopy and X‐ray diffractometry. All complexes displayed mesogenic properties, which were smectic in the case of symmetric dendrons and their complexes and nematic in the case of asymmetric dendrons and their dendrimers. A supramolecular model for the lamellar mesophase, based mainly on X‐ray diffraction studies, is proposed. The electrochemical behaviour of dendritic complexes was investigated by cyclic voltammetry. The UV/Vis absorption and emission properties of the compounds and the photoconductive properties of the dendrons and dendrimers were also investigated  相似文献   

14.
The interaction of a synthetic enantiopure azamacrocyclic receptor (L) with biologically important chiral dicarboxylates (A, 1-7) has been studied by means of potentiometric titrations in 0.15 M NaCl aqueous solution in a wide pH range. This macrocycle forms strong complexes of the type [HnLA](n-2) (with n = 0-5). As a general trend, the binding is much tighter at basic or neutral pH than in acidic medium. Interestingly, nonprotected excitatory amino acids (Asp and Glu) are strongly bound even at acidic pH. Regarding selectivity, the receptor showed stereoselective binding toward those substrates bearing an H-bonding donor at Calpha, being S-selective in most of the cases, except for glutamic acid. Thus, L displayed an excellent enantioselectivity for (S)-malate dianion (KS/KR = 11.50 at pH 10.0 and KS/KR = 6.86 at pH 7.0) and exhibited moderate enantiopreference for (S,S)-tartrate (KSS/KRR = 3.01 at pH 10 and KSS/KRR = 1.70 at pH 7.0). For this last anion, a very good diastereopreference was also observed (KSS/KRS = 8.46 at pH 10 and KSS/KRS = 4.99 at pH 7.0). On the contrary, L is smoothly R-selective toward (R)-Glu (KR/KS = 3.22 at pH 10 and KR/KS = 2.05 at pH 7.0) due to its longer and more flexible molecular structure. The stereoselectivity of the corresponding complexes decreased when decreasing pH values. For the hydroxy derivatives, mass spectrometry also reflected the trends observed by potentiometry and confirmed the receptor:dicarboxylate 1:1 stoichiometry of the supramolecular complexes. Additional experimental techniques were used to study the most stereoselective example. Solution studies by NMR suggested a good geometrical complementarity between the malate dianion and the receptor, which showed a predominant helical conformation in solution. Besides, self-diffusion rates (PGSE) of the diastereomeric complexes with malate also agree with binding data. Circular dichroism was also used in this case at different pH values, showing a very good correlation between the helical content of the receptor and the stereoselectivity of the molecular recognition process.  相似文献   

15.
First- and second-generation dendronized polymethacrylates PG1 and PG2 carrying chiral 4-aminoproline-based dendrons were obtained on the half-gram scale in high molar masses (PG1: M(n)=5 x 10(6) g mol(-1), PG2: M(n)=1x10(6) g mol(-1)) by spontaneous (radical) polymerization of the corresponding vinyl macromonomers. NMR spectroscopic studies on PG2 together with its unprecedented high glass transition temperature (T(g)>200 degrees C, decomp) and structural parameters provided by atomistic MD simulations show this polymer to be rather rigid. Optical rotation and CD measurements revealed that PG2 adopts a helical conformation that remains unchanged over wide ranges of temperature and solvent polarity. It is also retained when the polymer is deprotected (and thus positively charged, de-PG2) at its terminal amino groups, by which the mass and steric demand of the dendrons is reduced by roughly 50 %. Molecular dynamics simulations on models of PG2 reveal its helical conformation to be right-handed, irrespective of backbone tacticity, and initial results also indicate that de-PG2 retains the right-handedness.  相似文献   

16.
Four semirigid ditopic ligands, N,N'-bis(3-pyridylmethyl)-pyromellitic diimide (L(1)), N,N'-bis(4-pyridylmethyl)-pyromellitic diimide (L(2)), N,N'-bis(3-pyridylmethyl)-naphthalene diimide (L(3)), and N,N'-bis(4-pyridylmethyl)-naphthalene diimide (L(4)), reacted with Cd(NO(3))(2) to result in four cadmium(II) complexes, namely, {[Cd(2)(L(1))(2)(NO(3))(4)(CH(3)OH)(4)]·H(2)O} (1), [Cd(L(2))(NO(3))(2)(CH(3)OH)(2)·Cd(2)(L(2))(3)(NO(3))(4)]·{4(HCCl(3))·2H(2)O}(n) (2), {[Cd(L(3))(2)(NO(3))(2)]}(n) (3), and {[Cd(L(4))(2)(NO(3))(2)]·2(CHCl(3))}(n) (4). These complexes have been characterized by elemental analyses, powder X-ray diffraction, thermogravimetric (TG) analyses, IR spectroscopy, and single-crystal X-ray diffraction. Structural analyses show that four types of structures are formed: (1) a discrete M(2)L(2) ring with two Cd ions and two cis-L(1) ligands comprising a zero-dimensional molecular rectangle (0D), (2) an unusual zigzag linear chain and a one-dimensional ladder existing simultaneously in the crystal lattice (1D), (3) a two-dimensional network of the (4,4) net structure (2D), and (4) an unusual chiral three-dimensional framework with 5-fold interpenetrating diamond (dia) topology (3D). In these complexes, the ligands exhibit different coordination modes and construct various architectures by bridging Cd(NO(3))(2) inorganic building blocks. These results suggest that structural diversity of the complexes is tunable by ligand modifications, that is, varying the ligand spacer bulkiness or substituent position of terminal group. Furthermore, gas adsorption measurements indicate that 4 possesses moderate CO(2) uptake and some adsorption selectivity for CO(2) over N(2).  相似文献   

17.
The cationic peptide dendrons synthesized and studied are lower generation polylysine-based partial dendrimers with or without lipid chains in the core. The dendrons with lipidic chains can be utilized as protein and liposomal mimics because of their unique structural properties. The full assignments of three different dendrons (L)7(NH2)8, (C14)1(L)7(NH2)8 and (C14)3(L)7(NH2)8 were obtained in D2O and H2O/D2O using a 500 MHz NMR spectrometer. The hydrophobic lipidic core of branched polylysine dendrons was found to induce aggregation upon increasing concentration. Because non-lipidic dendrons do not self-assemble, the behaviour and internal structural features of two different dendrons with one and three C14 hydrocarbon chains were explored. The critical association concentration clearly depends on the number of core hydrophobic residues and the association starts at 0.025 mM for (C14)1(L)7(NH2)8 and 0.05 mM for (C14)3(L(7(NH2)8. Chemical shift analysis also revealed that the hydrophobic chains of the dendrons associate in the core, whereas the polar head groups (NH2) are mainly located at the surfaces of the aggregates. The T1 relaxation time measurements showed that the mobility of the hydrocarbon chain is greater with the monomeric form of dendron (C14)1(L)7(NH2)8) than that of monomer (C14)3(L)7(NH2)8. The inter-chain hydrophobic interactions restrict the flexibility of the dendron with three hydrocarbon chains. As expected, the flexibility of the monomeric form is higher than that of the aggregated state for both of the dendrons.  相似文献   

18.
Tridentate (L(3)) and bidentate (L(2)) poly(pyrazolyl)methane ligands (Gn-dend)OCH(2)C(pz)(3) (1-4) and (Gn-dend)CH(3,5-Me(2)pz)(2) (pz = pyrazol-1-yl) have been used to synthesize the molybdenum(0) complexes [Mo(CO)(3)(L(3))] (G0-G3, 5-8), [Mo(CO)(4)(L(2))] (G0-G1, 13-14), and [Mo(CO)(3)(NCMe)(L(2))] (G0, 15), and the molybdenum(VI) complexes [MoCl(2)O(2)(L(2))] (9-12). The G0-G3 prefixes represent the generation of poly(aryl ether) dendrons in which the metal complexes are embedded. The molecular structures of compounds 13 and 15 have been determined by X-ray diffraction studies and the hydrodynamic radii of tricarbonyl complexes 5-8 calculated by diffusion-ordered NMR spectroscopy (DOSY). Molybdenum(VI) compounds 9-12 have also been evaluated as catalysts for olefin epoxidation, showing comparable but inferior performances than ligand-free MoCl(2)O(2), probably because of the labile coordination of L(2).  相似文献   

19.
A novel convergent approach to dendritic macromolecules is described in which 4,6-dichloro-2-(4-methoxyphenyl)-pyrimidine is used as the building block. The nucleophilic aromatic substitution reaction at this AB2-monomer was used as the key step in the propagation of the dendrons. Different core reagents were used to form the dendrimers, including a 5,15-bis(pyrimidyl)porphyrin core. Fourth-generation dendrons and third-generation dendrimers could be synthesized. The presented dendrimers are promising candidates to be used in applications where a more rigid structure and a larger resistance towards the applied conditions is required.  相似文献   

20.
Six alkali metal tris(HMDS) magnesiate complexes (HMDS, 1,1,1,3,3,3,-hexamethyldisilazide) containing chiral diamine ligands have been prepared and characterised in both the solid- and solution-state. Four of the complexes have a solvent-separated ion pair composition of the form [{M·(chiral diamine)(2)}(+){Mg(HMDS)(3)}(-)] [M = Li for 1 and 3, Na for 2 and 4; chiral diamine = (-)-sparteine for 1 and 2, (R,R)-TMCDA for 3 and 4, (where (R,R)-TMCDA is N,N,N',N'-(1R,2R)-tetramethylcyclohexane-1,2-diamine)] and two have a contacted ion pair composition of the form [{K·chiral diamine}(+){Mg(HMDS)(3)}(-)](n) [chiral diamine = (-)-sparteine for 5 and (R,R)-TMCDA for 6]. In the solid-state, complexes 1-4 are essentially isostructural, with the lithium or sodium cation sequestered by the respective chiral diamine and the previously reported anion consisting of three HMDS ligands coordinated to a magnesium centre. As such, complexes 1-4 are the first structurally characterised complexes in which the alkali metal is sequestered by two molecules of either of the chiral diamines (-)-sparteine (1 and 2) or (R,R)-TMCDA (3 and 4). In addition, complex 4 is a rare (R,R)-TMCDA adduct of sodium. In the solid state, complexes 5 and 6 exist as polymeric arrays of dimeric [{K·chiral diamine}(+){Mg(HMDS)(3)}(-)](2) subunits, with 5 adopting a two-dimensional net arrangement and 6 a linear arrangement. As such, complexes 5 and 6 appear to be the only structurally characterised complexes in which the chiral diamines (-)-sparteine (5) or (R,R)-TMCDA (6) have been incorporated within a polymeric framework. In addition, prior to this work, no (-)-sparteine or (R,R)-TMCDA adducts of potassium had been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号