首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对KdV-Burgers方程的行波解进行线性稳定性分析,数值结果表明:对于正耗散情形,其行波解是稳定的;对于负耗散情形,其行波解是不稳定的.其次构造有限差分法对其行波解进行非线性动力学演化,结果表明:对于正耗散情形,KdV-Burgers方程的行波解是稳定的.本文结果修正和完善了相关文献中所得结论.  相似文献   

2.
This paper studies the Generalized Bretherton equation using trigonometric function method including the sech-function method, the sine-cosine function method, and the tanh-function method, and He's semi-inverse method (He's variational method). Various traveling wave solutions are obtained, revealing anintrinsic relationship among the amplitude, frequency, and wave speed.  相似文献   

3.
The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

4.
Elliptic Equation and New Solutions to Nonlinear Wave Equations   总被引:2,自引:0,他引:2  
The new solutions to elliptic equation are shown, and then the elliptic: equation is taken as a transformation and is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

5.
The double-sine-Gordon equation is studied by means of the so-called mapping method. Some new exact solutions are determined.  相似文献   

6.
In this paper, we study the bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation by using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space. Then we show the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, compactions and kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions and periodic wave solutions are implicitly given,while the expressions of kink-like and antikink-like wave solutions are explicitly shown. The dynamics of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of the nonlinear wave.  相似文献   

7.
基于改进的投影Riccati方程的解,提出一种新的构造非线性演化方程精确解的方法.通过这种方法,我们得导到了Boussinesq-Burgers方程各种类型的精确解,包括Jacobi和Weierstrass周期函数解.这种方法与数学软件Maple结合,简单易行,有助于探索其他非线性演化方程的精确解.  相似文献   

8.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

9.
Abstract In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f (ξ), is constructed to explore the new solitary wave solutions for nonlinear evolution equations. The method is applied to a compound KdV-Burgers equation, and abundant new solitary wave solutions are obtained. The algorithm is also applicable to a large variety of nonlinear evolution equations.  相似文献   

10.
A transformation is introduced for generalized mKdV (GmKdV for short) equation and Jacobi elliptic function expansion method is applied to solve it. It is shown that GmKdV equation with a real number parameter can be solved directly by using Jacobi elliptic function expansion method when this transformation is introduced, and periodic solution and solitary wave solution are obtained. Then the generalized solution to GmKdV equation deduces to some special solutions to some well-known nonlinear equations, such as KdV equation, mKdV equation, when the real parameter is set specific values.  相似文献   

11.
New Exact Travelling Wave Solutions to Kundu Equation   总被引:1,自引:0,他引:1  
Based on a first-order nonlinear ordinary differential equation with Six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

12.
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

13.
In terms of the solutions of an auxiliary ordinary differential equation, a new algebraic method, which contains the terms of first-order derivative of functions f(ξ), is constructed to explore the new solitary wave solutions for nonlinear evolution equations. The method is applied to a compound KdV-Burgers equation, and abundant new solitary wave solutions are obtained. The algorithm is also applicable to a large variety of nonlinear evolution equations.  相似文献   

14.
Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelope solutions, and Jacobian elliptic function envelope solutions, are obtained. To our knowledge, all of these results are new. In particular, our proposed method is very simple and can be applied to a lot of similar equations.  相似文献   

15.
The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. Among those, a lot of solutions are new.  相似文献   

16.
Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on. It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.  相似文献   

17.
In this paper we give a new integrable hierarchy. In the hierarchy there are the following representatives:
The first two are the positive members of the hierarchy, and the first equation was a reduction of an integrable (2+1)-dimensional system (see B. G. Konopelchenko and V. G. Dubrovsky, Phys. Lett. A 102 (1984), 15–17). The third one is the first negative member. All nonlinear equations in the hierarchy are shown to have 3×3 Lax pairs through solving a key 3×3 matrix equation, and therefore they are integrable. Under a constraint between the potential function and eigenfunctions, the 3×3 Lax pair and its adjoint representation are nonlinearized to be two Liouville-integrable Hamiltonian systems. On the basis of the integrability of 6N-dimensional systems we give the parametric solution of all positive members in the hierarchy. In particular, we obtain the parametric solution of the equation u t =5 x u –2/3. Finally, we present the traveling wave solutions (TWSs) of the above three representative equations. The TWSs of the first two equations have singularities, but the TWS of the 3rd one is continuous. The parametric solution of the 5th-order equation u t =5 x u –2/3 can not contain its singular TWS. We also analyse Gaussian initial solutions for the equations u t =5 x u –2/3, and u xxt +3u xx u x +u xxx u=0. Both of them are stable.  相似文献   

18.
The Camassa-Holm equation, Degasperis-Procesi equation and Novikov equation are the three typical integrable evolution equations admitting peaked solitons. In this paper, a generalized Novikov equation with cubic and quadratic nonlinearities is studied, which is regarded as a generalization of these three well-known studied equations. It is shown that this equation admits single peaked traveling wave solutions, periodic peaked traveling wave solutions, and multi-peaked traveling wave solutions.  相似文献   

19.
Solving Nonlinear Wave Equations by Elliptic Equation   总被引:5,自引:0,他引:5  
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.  相似文献   

20.
In this paper, new basic functions, which are composed of three basic Jacobi elliptic functions, are chosen as components of finite expansion. This finite expansion can be taken as an ansatz and applied to solve nonlinear wave equations. As an example, mKdV equation is solved, and more new rational form solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号