首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative model is presented that describes the formation of auditory brainstem responses (ABRs) to tone pulses, clicks, and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the "humanized" nonlinear auditory-nerve model of Zilany and Bruce [J. Acoust. Soc. Am. 122, 402-417 (2007)] and an empirically derived unitary response function which is assumed to reflect contributions from different cell populations within the auditory brainstem, recorded at a given pair of electrodes on the scalp. It is shown that the model accounts for the decrease of tone-pulse evoked wave-V latency with frequency but underestimates the level dependency of the tone-pulse as well as click-evoked latency values. Furthermore, the model correctly predicts the nonlinear wave-V amplitude behavior in response to the chirp stimulation both as a function of chirp sweeping rate and level. Overall, the results support the hypothesis that the pattern of ABR generation is strongly affected by the nonlinear and dispersive processes in the cochlea.  相似文献   

2.

Background  

Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation.  相似文献   

3.
Experiments were conducted to assess the contribution of place mechanisms to the effect of rise--fall time on wave V of the human brainstem auditory evoked response (BAER). Noise bursts of 4- and 10-ms duration were presented at various rise-fall times (0, 1, 2, and 5 ms). Subtractive high-pass masking techniques were used to determine the effect of rise time as a function of derived-band frequency. In general, increasing rise time prolonged wave V latency but did not affect amplitude. Rise-time effects did not depend on derived-band frequency and similar effects were seen in the unmasked conditions. In addition, narrowing the derived band did not alter the observed effects on latency and amplitude. Signal envelope showed no effects on traveling wave velocity. These results suggest that place mechanisms contribute little to changes in the BAER associated with rise--fall time.  相似文献   

4.
A series of experiments evaluated the effects of broadband noise (ipsilateral) on wave V of the brainstem auditory evoked response (BAER) elicited by tone bursts or clicks in the presence of high-pass masking noise. Experiment 1 used 1000- and 4000-Hz, 60-dB nHL tone bursts in the presence of broadband noise. With increasing noise level, wave V latency shift was greater for the 1000-Hz tone bursts, while amplitude decrements were similar for both tone-burst frequencies. Experiment 2 varied high-pass masker cutoff frequency and the level of subtotal masking in the presence of 50-dB nHL clicks. The effects of subtotal masking on wave V (increase in latency and decrease in amplitude) increased with increasing derived-band frequency. Experiment 3 covaried high-pass masker cutoff frequency and subtotal masking level for 1000- and 4000-Hz tone-burst stimuli. The effect of subtotal masking on wave V latency was reduced for both tone-burst frequencies when the response-generating region of the cochlear partition was limited by high-pass maskers. The results of these three experiments suggest that most of the wave V latency shift associated with increasing levels of broadband noise is mediated by a place mechanism when the stimulus is a moderate intensity (60 dB nHL), low-frequency (1000 Hz) tone burst. However, the interpretation of the latency shifts produced by broadband noise for 4000-Hz tone-burst stimuli is made more complex by multiple technical factors discussed herein.  相似文献   

5.
A series of experiments investigated the effects of continuous broadband noise (ipsilateral) on wave V of the click-evoked brainstem auditory evoked response (BAER). In general, a broadband noise masker increases the latency and decreases the amplitude of wave V. Varying both click and noise intensity, it was found that noise levels above about 40 dB SPL increase the latency and decrease the amplitude of wave V, regardless of click intensity. The effects of noise on wave V amplitude appear constant across click intensity, whereas the effects of a constant noise level on wave V latency decrease at higher click intensities. Both masking and adaptation increase wave V latency, but their combined effects are occlusive: rate-induced wave V latency shift decreases in the presence of continuous broadband noise. The clinical and theoretical implications of these findings are discussed.  相似文献   

6.

Aim  

The objective of this study is to evaluate the recovery of hearing function of auditory pathway after cochlear implantation by extracting the characterizations of electrically evoked auditory brainstem responses (EABR). The purpose of this study was to explore a reality and possible EABR test mode in clinical applications, rather than strict animal research.  相似文献   

7.
The acoustic change complex (ACC) is a scalp-recorded negative-positive voltage swing elicited by a change during an otherwise steady-state sound. The ACC was obtained from eight adults in response to changes of amplitude and/or spectral envelope at the temporal center of a three-formant synthetic vowel lasting 800 ms. In the absence of spectral change, the group mean waveforms showed a clear ACC to amplitude increments of 2 dB or more and decrements of 3 dB or more. In the presence of a change of second formant frequency (from perceived /u/ to perceived /i/), amplitude increments increased the magnitude of the ACC but amplitude decrements had little or no effect. The fact that the just detectable amplitude change is close to the psychoacoustic limits of the auditory system augurs well for the clinical application of the ACC. The failure to find a condition under which the spectrally elicited ACC is diminished by a small change of amplitude supports the conclusion that the observed ACC to a change of spectral envelope reflects some aspect of cortical frequency coding. Taken together, these findings support the potential value of the ACC as an objective index of auditory discrimination capacity.  相似文献   

8.
本工作以疏波短声作为刺激声在35位受试者(58耳)分别测出诱发性耳声发射(EOAE)、行为反应(BR)及听觉脑干反应(ABR)的阈值.闭值的主要分布范围:EOAE为10-45dB(nHL),占总数的86%;为10-25dB,占88%;ABR为10-35dB,亦占88%.所有受试耳的三种阈值的相关系数r:EOAE-BR为0.415(p<0.002).EOAE-ABR为0.501(p<0.001),ABR-BR为0.702(p<0.001),均呈显著相关.若仅取BR、ABR或EOAE阈值≥25dB的耳作统计,则EOAE-BR间的r只有0.176及0.292;EOAE-ABR的r只有0.310及0.300,无相关(p0.05),而ABR-BR间的r仍有0.533及0.720,(p<0.05),这些结果表明EOAE与听阈之间只有在后者正常或稍升高时才有一定的相关,当听阈上升较多时相关即不存在.EOAE可以作为听力学检查的一种辅助方法,但不能用它推算听阈.  相似文献   

9.
In 35 adult human subjects(58 ears)thresholds of rarefactlon clickevoked otoacoustic emission(EOAE),behavioral response(BR)and auditorybrainstem response(ABR)were measured and compared,and correlationcoefficients(r)among them calculated.The results revealed that 86% of themeasured thresholds were in the range from 10 to 45 dB(nHL)for EOAE,88% from 10 to 25 dB for BR and 88% from 10 to 35 for ABR.The correlationcoefficients for the whole threshold sample were 0.415(p<0.002)for EOAE vs.BR,0.501(p<0.001)for EOAE vs.ABR and 0.702(p<0.001)for ABR vs.BR,all indicating highly significant correlation.However,for those ears whoseBR,ABR or EOAE thresholds were elevated,equaling to or exceeding 25 dB,there is no significant correlation between thresholds of EOAE and BR and ofEOAE and ABR(r range:0.176-0.310,p>0.05).In contrast,significantcorrelation between BR and ABR thresholds in the same conditions still re-mained(r:0.533-0.720,p<0.05).The experimental results indicate that thecorrelation between EOAE and hea  相似文献   

10.
Measurement of the auditory steady-state response (ASSR) is increasingly used to assess marine mammal hearing. These tests normally entail measuring the ASSR to a sequence of sinusoidally amplitude modulated tones, so that the ASSR amplitude function can be defined and the auditory threshold estimated. In this study, an alternative method was employed, where the ASSR was elicited by an amplitude modulated stimulus whose sound pressure level was slowly varied, or "swept," over a range of levels believed to bracket the threshold. The ASSR amplitude function was obtained by analyzing the resulting grand average evoked potential using a short-time Fourier transform. The suitability of this technique for hearing assessment of bottlenose dolphins and California sea lions was evaluated by comparing ASSR amplitude functions and thresholds obtained with swept amplitude and discrete, constant amplitude stimuli. When factors such as the number of simultaneous tones, the number of averages, and the frequency analysis window length were taken into account, the performance and time required for the swept-amplitude and discrete stimulus techniques were similar. The decision to use one technique over another depends on the relative importance of obtaining suprathreshold information versus the lowest possible thresholds.  相似文献   

11.
12.
The frequency specificity of the auditory brainstem response (ABR) was examined by means of pure-tone masking profiles using click, 4000-Hz, and 1000-Hz filtered-click stimuli. Simultaneous pure-tone maskers were presented at one-half octave intervals around stimulus center frequency. Masking profiles at two intensities (60 and 40 dB SL) were obtained by measuring both latency and amplitude shifts in wave V as a result of the discrete-frequency maskers. Both latency and amplitude analyses showed masking profiles at 40 dB SL that were narrow and centered around stimulus frequency, whereas profiles at 60 dB SL showed high-frequency spread of the cochlear excitation area.  相似文献   

13.
This study investigated the frequency specificity of the auditory brainstem and middle latency responses to 80 and 90 dB ppe SPL 500-Hz and 90 dB ppe SPL 2000-Hz tonebursts. The stimuli were brief (2-1-2 cycle) linear-gated tonebursts. ABR/MLRs were recorded using two electrode montages: (1) Cz-nape of neck and (2) Cz-ipsilateral earlobe. Cochlear contributions to ABR wave V-Na and MLR waves Na-Pa and Pa-Nb were assessed by plotting notched noise tuning curves which showed amplitudes and latencies as a function of center frequency of the noise masker [Abdala and Folsom, J. Acoust. Soc. Am. 97, 2394 (1995); ibid. 98, 921 (1995)]. Maxima in the response amplitude profiles for the ABR and MLR to 80 dB ppe SPL tonebursts occurred within one-half octave of the nominal stimulus frequency, with minimal contributions to the responses from frequencies greater than one octave away. At 90 dB ppe SPL, contributions came from a slightly broader frequency region for both stimulus frequencies. Thus, the ABR/MLR to 80 dB ppe SPL tonebursts shows good frequency specificity which decreases at 90 dB ppe SPL. No significant differences exist in frequency specificity of: (1) ABR wave V-Na versus MLR waves Na-Pa and Pa-Nb at either stimulus frequency or intensity; and (2) ABR/MLRs recorded using the two electrode montages.  相似文献   

14.

Background  

Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs) elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold.  相似文献   

15.
Interaction of cortical evoked potentials to electric and acoustic stimuli   总被引:1,自引:0,他引:1  
Evoked potentials to a dichotic stimulus composed of either (1) two binaurally presented tone pips or (2) one tone pip and an electrical pulse to the auditory nerve are recorded from the primary auditory cortex of barbiturate anesthetized cats. The composite stimulus is delivered as a time delayed pair where the interstimulus interval (25 ms) is within the relative refractory period of the evoked potential to either stimulus alone. The amplitude of the cortical potential to the trailing stimulus is compared with its single amplitude as the frequency of the trailing tone pip is changed from 250 Hz through 40 kHz. There is an optimal frequency range over which the trailing stimulus is suppressed and this range appears directly related to the current of a preceding electrical pulse. The frequency of maximum suppression shifts according to the position of the electrode in the nerve. In some experiments secondary maxima develop, suggesting stimulus current spread from fibers of one cochlear turn into fibers from another turn.  相似文献   

16.
The effects of broadband noise on the brain-stem auditory evoked response (BAER) are reported for two experiments. Experiment 1 used a high-pass subtractive-masking technique and covaried derived bandwidth and continuous broadband noise level. Comparison of responses to half-octave wide derived bands in the presence of within-band noise showed that wave V latency changes were greater than could be explained on the basis of shifts in the cochlear region responsible for generating the response. The magnitude of within-band noise-induced wave V latency shift was independent of the frequency separation of the masker cutoffs. In experiment 2 the effects of noise level and rate on waves I, III, and V of the BAER were evaluated. Peak latencies increased and peak amplitudes decreased with increasing noise level and rate. Higher noise levels and rates produced an increased central (I-V) conduction time in which the wave III-V increase was greater than the wave I-III increase. Together, these results are most consistent with the hypothesis that a nonplace, central auditory mechanism produces most of the noise-induced latency shifts in normal-hearing adults.  相似文献   

17.
Brainstem electrical responses (BSER) to 60-dB-SL click in noise high passed at various cutoff frequencies separated b 1/2-octave steps were recorded in normal-hearing adult subjects. By applying a derived response technique, narrow-band contributions to the BSER from specific portions of the basilar membrane were revealed. Latencies and amplitudes of the various waves in the derived BSER were recorded. Results indicate that nearly the whole cochlear partition can contribute to the brainstem response. The shifts in latency of waves I, III, and V and amplitude changes of waves I and III as a function of CF appear to be fully comparable to those of the AP. In contrast, the amplitude behavior of wave V as a function of CF is different from waves I and III depending upon frequency range. The discrepency in the behavior of wave V with respect to the earlier waves suggests some sort of neural reorganization at the level where was V is generated. The fact that there are contributions to the brainstem response from apical portions of the cochlea opens the possibility for extending the brainstem technique in assessing the higher cochlear turn function.  相似文献   

18.
Auditory brainstem responses (ABRs) were recorded in adult budgerigars, canaries, and zebra finches in quiet and in three levels of white noise for tone stimuli between 1 and 4 kHz. Similar to behavioral results, masked ABR thresholds increased linearly with increasing noise levels. When the three species are considered together, ABR-derived CRs were higher than behavioral CRs by 18-23 dB between 2 and 4 kHz and by about 30 dB at 1 kHz. This study clarifies the utility of using ABRs for estimating masked auditory thresholds in natural environmental noises in species that cannot be tested behaviorally.  相似文献   

19.

Background  

Due to auditory experience, musicians have better auditory expertise than non-musicians. An increased neocortical activity during auditory oddball stimulation was observed in different studies for musicians and for non-musicians after discrimination training. This suggests a modification of synaptic strength among simultaneously active neurons due to the training. We used amplitude-modulated tones (AM) presented in an oddball sequence and manipulated their carrier or modulation frequencies. We investigated non-musicians in order to see if behavioral discrimination training could modify the neocortical activity generated by change detection of AM tone attributes (carrier or modulation frequency). Cortical evoked responses like N1 and mismatch negativity (MMN) triggered by sound changes were recorded by a whole head magnetoencephalographic system (MEG). We investigated (i) how the auditory cortex reacts to pitch difference (in carrier frequency) and changes in temporal features (modulation frequency) of AM tones and (ii) how discrimination training modulates the neuronal activity reflecting the transient auditory responses generated in the auditory cortex.  相似文献   

20.
The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4-5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号