首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Harderoporphyrin, the tricarboxylic acid porphyrin present in the Harderian glands of the rat and hamster is shown to be 4,6,7-tri(2-carboxyethyl)-1,3,5,8-tetramethyl-2-vinylporphin by its ring synthesis via the b-oxobilane route. The isomeric 4-vinylporphyrin tricarboxylic acid is also prepared by a similar approach.  相似文献   

2.
Harderoporphyrin (2-vinyl-4,6,7-tripropionic acid porphyrin) and its metabolites in faeces of patients with hereditary coproporphyria (HCP) have been separated and characterized by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC/ESI-Q-TOFMS/MS). The metabolites identified were 2-ethyl-4,6,7-tripropionic acid porphyrin, 2-hydro-4,6,7-tripropionic acid porphyrin, 2-methoxyethyl-4,6,7-tripropionic acid porphyrin and 2-acetyl-4,6,7-tripropionic acid porphyrin. Isomers of harderoporphyrin derived from isomerization of harderoporphyrinogen were also detected.  相似文献   

3.
Reversed-phase TLC systems using ion-pairing reagents are described for the separation without prior derivatization of the porphyrins of rat Harderian gland. Porphyrins with R(f) values greater than protoporphyrin but smaller than coproporphyrin, representing harderoporphyrin, were labile to 1 m NaOH, which converted them to protoporphyrin, inconsistent with the established literature that harderoporphyrin is a tricarboxylic acid porphyrin. It was confirmed by HPLC/electrospray ionization MS that this 'harderoporphyrin' fraction consists of the recently characterized glycoconjugate, protoporphyrin-1-O-acyl beta-xyloside, with trace amounts of protoporphyrin-1-O-acyl beta-glucoside.  相似文献   

4.
Manganese porphyrin catalysts were tethered to polymer-supports via peptide linkers. The reactivity and chemoselectivity of the catalysts were assessed in the epoxidation of limonene. It was found that the inclusion of a peptide linker incorporating a donor heteroatom which could act as an axial ligand led to a supported manganese porphyrin catalyst with unprecedented selectivity and stability.  相似文献   

5.
We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies.  相似文献   

6.
We report the synthesis and characterization of L- and T-shaped porphyrin tapes as extensible structural motifs of two-dimensionally extended porphyrin tapes. The two-photon absorption (TPA) cross-section values (sigma((2))) for L- and T-shaped porphyrin tapes as well as those for linear trimeric and tetrameric porphyrin tapes were measured by an open-aperture Z-scan method at 2300 nm, a wavelength at which the one-photon absorption contribution is either zero or almost negligible. Under these conditions, the sigma((2)) values for the linear porphyrin tape trimer and tetramer were determined to be 18 500 and 41 200 GM, respectively. The sigma((2)) value for the L-shaped trimer was determined to be 8700 GM, which is only half that of the linear trimer, whereas the sigma((2)) value for the T-shaped tetramer was measured to be 35 700 GM. These results clearly indicate the dependence of the TPA cross-section on the molecular shape, which underscores the importance of directionality in the pi-conjugation pathway for the enhancement of TPA cross- section.  相似文献   

7.
A novel surface fabrication methodology has been accomplished, aimed at efficient anodic photocurrent generation by a photoexcited porphyrin on an ITO (indium-tin oxide) electrode. The ITO electrode was submitted to a surface sol-gel process with titanium n-butoxide in order to deposit a titanium monolayer. Subsequently, porphyrins were assembled as monolayers on the titanium-treated ITO surface via phosphonate, isophthalate, and thiolate groups. Slipped-cofacial porphyrin dimers, the so-called artificial special pair at the photoreaction center, were organized through imidazolyl-to-zinc complementary coordination of imidazolylporphyrinatozinc(II) units, which were covalently immobilized by ring-closing olefin metathesis of allyl side chains. The modified surfaces were analyzed by means of X-ray photoelectron spectroscopy. Photoirradiation of the porphyrin dimer generated a large anodic photocurrent in aqueous electrolyte solution containing hydroquinone as an electron sacrificer, due to the small reorganization energy of the dimer. The use of different linker groups led to significant differences in the efficiencies of anodic photocurrent generation. The apparent flat-band potentials evaluated from the photocurrent properties at various pH values and under biased conditions imply that the band structure of the ITO electrode is modified by the anchoring species. The quantum yield for the anodic photocurrent generation by photoexcitation at the Soret band is increased to 15 %, a surprisingly high value without a redox cascade structure on the ITO electrode surface, while excitation at the Q band is not so significant. Extensive exploration of the photocurrent properties has revealed that hot injection of the photoexcited electron from the S2 level into the conduction band of the ITO electrode takes place before internal conversion to the S1* state, through the strong electronic communication of the phosphonyl anchor with the sol-gel-modified ITO surface.  相似文献   

8.
2,3,7,8,12,13,17,18‐Octaethyl‐5,15‐diphenylporphyrin ( 1 ) is characterized by an inner cavity with a rectangular shape and small NH???N distances. It resembles porphycene, which is a constitutional isomer of porphyrin known for its strong intramolecular hydrogen bonds and rapid tautomerization. Such distortion of the porphyrin cavity leads to tautomeric properties of 1 that are intermediate between those of porphyrin and porphycene. In particular, a tautomerization in the lowest excited singlet state of 1 has been discovered, occurring with a rate three orders of magnitude lower than that in porphycene, but three to four orders of magnitude higher than that in porphyrin. An isomer of 1 , 2,3,7,8,12,13,17,18‐octaethyl‐5,10‐diphenylporphyrin ( 2 ), exhibits a different kind of geometry distortion. This molecule is nonplanar, but the inner cavity shape and dimensions are similar to those of the parent porphyrin. The same hydrogen‐bonding strength as that in porphyrin is observed for 2 . In contrast, the nonplanarity of 2 significantly influences the photophysics, leading to a decrease in fluorescence quantum yield and lifetime. Absorption, magnetic circular dichroism, and fluorescence spectra are similar for 1 and 2 and resemble those of parent porphyrin. This is a consequence of comparable energy splittings of the frontier orbitals, ΔHOMO≈ΔLUMO. The results demonstrate that judicious selection of substituents and their position enables a controlled modification of geometry, hydrogen‐bonding strength, tautomerization rate, and photophysical and spectral parameters of porphyrinoids.  相似文献   

9.
An amphiphilic compound, 5‐(4′‐dodecyloxyphenyl)‐10,15,20‐tri(permethyl‐β‐CD)‐modified ZnII–porphyrin ( 1 ; β‐CD=β‐cyclodextrin), was synthesized by means of the click reaction of an alkylated Zn–porphyrin derivative with 6‐deoxy‐6‐azidopermethyl‐β‐CD. The complexation between 1 and tetrasodium tetraphenylporphyrintetrasulfonate ( 5 ) with different molar ratios led to the formation of two distinctly different nanoarchitectures, which were proven to be vesicle and network aggregates, respectively, by using dynamic light scattering, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. On the basis of the results of the time‐dependent TEM studies, fluorescence, and NMR spectroscopic measurements, we have determined that the mechanism of the morphology transition from vesicles to networks is controlled by the stepwise complexation of 1 with 5 . Furthermore, these supramolecular nanoarchitectures show the controlled‐ release property of doxorubicin as potential candidates for drug delivery.  相似文献   

10.
The synthesis and aggregation behavior of meso‐sulfinylporphyrins are described. The copper‐catalyzed C–S cross‐coupling reaction of a meso‐iodoporphyrin with benzenethiol and n‐octanethiol has proved to be an efficient method for the synthesis of meso‐sulfanylporphyrins, which are oxygenated by m‐chloroperbenzoic acid to produce the corresponding meso‐sulfinylporphyrins. Optically active zinc meso‐sulfinylporphyrins were successfully isolated by means of optical resolution of the racemates on a chiral HPLC column. Zinc sulfinylporphyrins readily undergo self‐organization through S–oxo–zinc coordination to form cofacial porphyrin dimers in solution, in which the hetero‐ and homodimers are present as a diastereomeric mixture. The aggregation modes of the S–oxo‐tethered porphyrin dimers were fully characterized by 1H NMR, IR, and UV/Vis spectroscopy as well as DFT calculations on their model compounds, thus revealing that the self‐aggregation behavior depends on the combination of S chirality. The absolute configurations at the sulfur center can be determined by the exciton‐coupled CD method. The observed self‐association constant for the S–oxo‐tethered dimerization of (S)‐phenylsulfinylporphyrin in toluene is larger than that in dichloromethane, which reflects the difference in dipole moments between the homodimer and the monomer. In cyclic and differential pulse voltammetry, the first oxidation process of the cofacial dimers is split into two reversible steps, which indicates that the initially produced π radical cations are delocalized efficiently between the two porphyrin rings. The present findings demonstrate the potential utility of meso‐sulfinyl groups as promising ligands for investigating the effects of peripheral chirality on the structures and optical and electrochemical properties of metal‐assisted porphyrin self‐assemblies.  相似文献   

11.
A series of doubly β‐to‐β bridged cyclic ZnII porphyrin arrays were prepared by a stepwise Suzuki–Miyaura coupling reaction of borylated ZnII porphyrin with different bridge groups. The coupling of the building block of β,β′‐diboryl ZnII porphyrin 1 with different bridges provided the doubly β‐to‐β carbazole‐bridged ZnII porphyrin array 3 , the fluorene‐bridged ZnII porphyrin array 5 , the fluorenone‐bridged ZnII porphyrin array 7 , and the three‐carbazole‐bridged ZnII porphyrin ring 8 . The structural assignment of 3 was confirmed by the X‐ray diffraction analysis, which revealed a highly symmetrical and remarkably bent syn‐form structure. The incorporation of bridge units with different electronic effects results in different photophysical properties of the cyclic ZnII porphyrin arrays. Comprehensive photophysical studies demonstrate that the electron‐withdrawing bridge fluorenone has the largest electronic interaction with the ZnII porphyrin unit among the series, thus resulting in the highest two‐photon absorption cross‐section values (σ(2)) of 6570±60 GM for 7 . The present work provides a new strategy for developing porphyrin‐based optical materials.  相似文献   

12.
We report two crystal structures of a synthetic porphyrin molecule which was programmed for self-assembly. The same groups which ensure that bacteriochlorophylls c, d, and e can self-assemble into the chlorosomal nanorods, the photosynthetic antenna system of some green bacteria, have been engineered into desired positions of the tetrapyrrolic macrocycle. In the case of the 5,15-meso-substituted anchoring groups, depending upon the concentration, by using the same crystallization solvents, either a tetragonal or a layered structure of porphyrin stacks were encountered. Surprisingly, pi-pi interactions combined with extensive dispersive interactions, which also encompass cyclohexane, one of the crystallization solvents, win over putative hydrogen bonding. We are aware that our compounds differ considerably from the natural bacteriochlorophylls, but based upon our findings, we now question the hydrogen-bonding network, previously proposed to organize stacks of bacteriochlorophylls. Transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS) on various isomeric compounds support our challenge of current models for the chlorosomal antenna as these show structures, astonishingly similar to those of chlorosomes.  相似文献   

13.
Tetrameric porphyrin formation of 2‐hydroxymethylpyrrole fused with porphyrins through a bicyclo[2.2.2]octadiene unit gave bicyclo[2.2.2]octadiene‐fused porphyrin pentamers. Thermal conversion of the pentamers gave fully π‐conjugated cruciform porphyrin pentamers fused with benzene units in quantitative yields. UV/Vis spectra of fully π‐conjugated porphyrin pentamers showed one very strong Q absorption and were quite different from those of usual porphyrins. From TD‐DFT calculations, the HOMO level is 0.49 eV higher than the HOMO?1 level. The LUMO and LUMO+1 levels are very close and are lower by more than 0.27 eV than those of other unoccupied MOs. The strong Q absorption was interpreted as two mutually orthogonal single‐electron transitions (683 nm: 86 %, HOMO→LUMO; 680 nm: 86 %, HOMO→LUMO+1). The two‐photon absorption (TPA) cross section value (σ(2)) of the benzene‐fused porphyrin pentamer was estimated to be 3900 GM at 1500 nm, which is strongly correlated with a cruciform molecular structure with multidirectional π‐conjugation pathways.  相似文献   

14.
Tetrakis(permethyl-beta-cyclodextrin)-modified zinc(II) porphyrin (1) and tetra(beta-cyclodextrin)-modified zinc(II) porphyrin (2) were synthesized via "click chemistry". Intermolecular inclusion complexation of these structurally similar 1 and 2 with tetrasodium tetraphenylporphyrintetrasulfonate (3) led to formation of two distinctly different nanoarchitectures with alternate porphyrin and cyclodextrin arrays, which were proven to be network and nanorod aggregates, respectively, by using transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. From the results of comparative studies in different solutions, we elucidated the mechanisms that result in nanorod to network aggregates transition, concluding that the complexation strength of porphyrin with cyclodextrin is a crucial factor to activate the potential binding sites of a molecular building block.  相似文献   

15.
The detection of water-soluble vitamins B(1), B(2), B(6), B(12) and C by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) was attempted by studying 17 porphyrin matrices. Comparative studies of porphyrin matrices, useful mass spectral window, matrix/analyte molar ratio (M/A), ultraviolet-visible absorption characteristics and quantitative results were made. Most porphyrin matrices provide a useful mass spectral window in the low-mass range. The optimal M/A increases with increasing molecular mass of the vitamin. Vitamin B(12) possesses the highest molecular mass and requires a higher M/A. The presence of hydroxyl or carboxyl groups in the porphyrin is an indicator of a useful MALDI matrix. Vitamins B(2) and B(6) were readily ionized upon irradiation with a 337 nm laser without the use of any porphyrin matrix. Improved linearity and sensitivity of the calibration curves were obtained with samples prepared with a constant M/A. The limits of detection and quantitation are at the picomole level. The results indicate that MALDI-TOFMS with porphyrin matrices is a rapid and viable technique for the detection of low molecular mass water-soluble vitamins.  相似文献   

16.
Novel molecular energy and electron transfer assemblies in vesicular form, which are made of self-organized amphiphilic porphyrins bearing phospholipid-like substituents (lipid-porphyrins), have been photochemically characterized. Tetraphenylporphyrin (TPP) derivatives with four dialkylphosphocholine groups [free-base (1 a), Zn(2+) complex (1 b), and Fe(3+) complex (1 c)] are spontaneously associated in water to form spherical unilamellar vesicles with a diameter of 100-150 nm. Exciton calculations based on the bilayered sheet model of 1 b, which has a porphyrin packing similar to that seen in the triclinic unit cell of the Zn(2+)TPP crystals, reproduced the Soret band bathochromic shift appearing in the aqueous solution of 1 b well. The UV/Vis absorption spectrum of the 1 a/1 b hybrid vesicles (molar ratio: 1/1) showed no electronic interaction between the two porphyrin chromophores in the ground state, but efficient intermolecular singlet-singlet energy transfer took place from the excited 1 b donors to the 1 a acceptor within the vesicle. Near-field scanning optical microspectroscopy of the 1 a/1 b vesicles on a graphite surface also showed only free-base porphyrin fluorescence. The efficiency of the energy transfer was 0.81 and the rate constant was 3.1 x 10(9) s(-1). On the other hand, protoporphyrin IX bearing two alkylphosphocholine propionates (2) was incorporated into the 1 a or 1 c bilayer vesicles (ca. 100 nm phi, molar ratio: 1 a/2 or 1 c/2=10). The UV/Vis absorption spectrum showed that 2 was successfully anchored into the fluid alkylene region of the membrane without stacking. Photoirradiation (lambda(ex): 390 nm) of the 1 c/2 vesicles in the presence of triethanolamine led a vectorial electron transfer from the outer aqueous phase to the membrane center, which allowed reduction of the ferric ion of the Fe(3+)TPP platform.  相似文献   

17.
A novel route to make crosslinked polystyrene (CPS) microspheres to be porphyrin‐functionalized via two special polymer reactions, Kornblum reaction and Adler reaction, was designed and founded. The chloromethyl groups of chloromethylated crosslinked polystyrene (CMCPS) microspheres were first oxidized to aldehyde groups by dimethyl sulfoxide as oxidant via Kornblum oxidation reaction, obtaining aldehyde group‐modified microspheres, ALCPS microspheres, in which, a great quantity of benzaldehyde groups suspend from the main chain, and the effects of the main factors including the reaction temperature, the addition of KI as catalyst and the used amount of NaHCO3 as acid acceptor on the oxidation reaction were examined. Subsequently, the synchronic synthesizing and immobilizing of porphyrins on CPS microspheres were carried out via the Adler reaction between solid and liquid phases, in which, ALCPS microspheres, pyrrole and benzaldehyde or benzaldehyde analog in a solution were used as co‐reactants, resulting in porphyrin‐functionalized microspheres, and the influence of diverse factors including the acidity of the protonic acid catalyst, the substituent structure of benzaldehyde analog, and the polarity of the solvent as well as the swelling property of the solvent for CPS microspheres on the process of synchronously synthesizing and immobilizing porphyrins on CPS microspheres were investigated in depth. The experimental results indicate that via the designed route, the porphyrin‐functionalization of CPS microspheres can successfully be realized. For the Kornblum oxidation reaction, under the optimal reaction conditions, the conversion of chloromethyl groups can reach 90%. For the Adler reaction between solid and liquid phases, the fitting protonic acid catalyst is lactic acid, appropriate solvent is a mixture of dimethyl sulfoxide and xylene, and using 4‐chlorobenzaldehyde as a benzaldehyde analog reactant in the solution is in favor of the porphyrin‐functionalization of CPS microspheres. Under these specific conditions, the immobilized amount of porphyrin can get up to 23.33 mmol/100 g. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A novel straightforward methodology to organize discrete heterogeneous stacks of porphyrin and phthalocyanine employed an imidazolyl-to-zinc complementary coordination protocol for a Zn(II) phthalocyanine that contains an imidazolyl terminal with an ethynylporphyrin as a coplanar spacer. Structural elucidation was performed by means of size-exclusion chromatography, spectral titration, and NMR spectroscopy. The association constants for the complementary coordination of the heterogeneous slipped-cofacial tetrads reached extremely high values, in the order of 10(14) M(-1). Close contact of the porphyrin and phthalocyanine planes led to a strong shielding of the cofacial protons, which were split due to the slipped-cofacial heterogeneous environment. In variable-temperature NMR spectroscopy, the split signals remained in the aromatic region, a result suggesting structural robustness. Addition of trifluoroacetic acid dissociated the coordination structure to unify the split signals. The stacked tetrads showed unique electronic structures, such as strong exciton coupling and charge-transfer properties between the porphyrin and phthalocyanine units, which were modulated by the peripheral substituents of the phthalocyanine subunit and by the solvent. Interconversion between the coordination tetrad and the corresponding dyad was observed upon addition of an axial ligand.  相似文献   

19.
The interactions of the tetracationic meso-tetrakis(N-methyl-4-pyridyl)porphyrin (H(2)TMPyP) and its metallo derivatives (MTMPyP) (where M=copper(II), zinc(II), and gold(III) with the octa-anionic form (at neutral pH) of 5,11,17,23-tetrasulfonato-25,26,27,28-tetrakis(hydroxycarbonylmethoxy)calix[4]arene (C(4)TsTc) lead to a series of complex species whose stoichiometry and porphyrin sequence can be easily tuned. Crystallographic, spectroscopic, and diffusion NMR studies converge towards a common picture in which a central 1:4 porphyrin/calixarene unit serves as a template for the formation of more complex species. These species arise by successive, stepwise addition of single porphyrin molecules above and below the plane of the 1:4 central core to ultimately give a 7:4 complex. Noticeably, the stoichiometry of the various complex species corresponds to the actual concentration ratio of porphyrins and calixarenes in solution allowing the stoichiometry of these species to be easily tuned. This behavior and the remarkable stability of these species allow homo-porphyrin and hetero-(metallo)porphyrin species to be formed with control of not only the stoichiometry but also the sequence of the porphyrin array. The flexibility and ease of this approach permit, in principle, the design and synthesis of porphyrin arrays for predetermined purposes. For example, we have shown that it is very easy to design and obtain mixed porphyrin species in which a foreseen photoinduced electron-transfer is indeed observed.  相似文献   

20.
Photoinduced electron transfer (ET) between C60 and porphyrin (P) in a new polymer containing porphyrin, poly(p-phenylenevinylene), and pendant fullerene units has been investigated by nanosecond transient absorption and phosphorescence spectroscopy. Compared to the physically doping material systems, binding porphyrin/C60 through chemical bonds in a polymer detains the formation of the triplet states of porphyrins and C60. The formation of intermediate charge transfer state (CSS) of P+-C60 ? was observed, which led to the delayed formation of triplet states of porphyrins and C60. The reduced opto-electronic properties, such as optical limiting performance, were also observed, which resulted from the delayed formation of triplet states. The results presented in this article are significant in understanding the complicated spectral characteristics of the triplet state and charge transfer of the porphyrin and C60 complexes, and are therefore related to the controllable performance of the new materials in applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号