首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive and specific high-performance liquid chromatography-electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the first time to determine the concentration of lafutidine in human plasma. After the addition of diazepam (the internal standard, IS) and 1 M sodium hydroxide solution to 0.5-ml plasma sample, lafutidine was extracted from plasma with n-hexane : isopropanol (95 : 5, v/v). The organic layer was evaporated and the residue was redissolved in 200-microl mobile phase. The analyte was chromatographically separated on a prepacked Shimadzu Shim-pack VP-ODS C(18) column (250 x 2.0 mm i.d.) using a mixture of methanol-water (20 mM CH(3)COONH(4)) = 80 : 20 (v/v) as mobile phase. Detection was performed on a single quadrupole mass spectrometer using an electrospray ionization interface and the selected-ion monitoring (SIM) mode. The method showed excellent linearity (r = 0.9993) over the concentration range of 5-400 ng/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation. The limit of detection was 1 ng/ml. The validated LC/ESI-MS method has been successfully applied to the bioequivalence study of lafutidine in 24 healthy male Chinese volunteers.  相似文献   

2.
A selective and sensitive method employing high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry is developed and validated for the determination of emedastine difumarate in human plasma. With naphazoline hydrochloride as the internal standard, emedastine difumarate is extracted from plasma with ethyl acetate. The organic layer is evaporated, and the residue is redissolved in the mobile phase. An aliquot of 10 microL is chromatographically analyzed on a prepacked Phenomenex Luna 5u CN 100A (150 x 2.0-mm i.d.) column, using a mobile phase comprised of methanol-water (20 mM CH(3)COONH(4), pH 4.0) (80:20, v/v). Standard curves are linear (r(2) = 0.9990) over the concentration range of 0.05-30 ng/mL and had good accuracy and precision. The within- and between-batch precisions did not exceed 15% for the relative standard deviation. The lower limit of detection is 0.01 ng/mL. The validated HPLC-ESI-MS method is successfully used to study emedastine difumarate pharmacokinetics in 12 healthy volunteers.  相似文献   

3.
Simultaneous determination of 20 antidepressants in plasma samples was carried out by non-aqueous capillary electrophoresis with time of flight mass spectrometry via electrospray ionization, where a mixture of 60 mM ammonium acetate and 1M acetic acid in acetonitrile, and water, as well as methanol (100:1:0.5, v/v/v) was selected as the background electrolyte. By using time of flight mass spectrometry, accurate mass information was obtained and the background noise was dramatically decreased, thus causing a great improvement in qualitative ability. As for the plasma sample, solid phase extraction with Oasis HLB was used. The limits of detection and quantification were in the range of 0.5-1 and 1-5 ng/ml, respectively. The sensitivity of the present method was found better, i.e. approximately 10-60 folds compared to that using photo diode array detectors because the analyte peak could be clearly distinguished from the background derived from the plasma. The present method was found very useful and practical as regards to routine analysis of plasma samples.  相似文献   

4.
An on-line immunoextraction and liquid chromatography/mass spectrometry (LC/MS) method was developed and validated for the determination of R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol in rat plasma. Sample preparation involved immunoextraction of analytes using an antibody raised against R,R'- and R,S'-aminofenoterol that was immobilized onto chromatographic support. LC was performed on a Waters hydrophilic interaction chromatography (HILIC) column (150 mm x 2.1mm), using an isocratic mobile phase of methanol:ammonium acetate (10mM, pH 6.8) (90:10, v/v) at a flow rate of 0.2 ml/min. The MS was operated in the single ion monitoring mode (m/z 304.2 for R,R'-fenoterol, m/z 318.1 for R,R'-methoxyfenoterol, and m/z 339.2 for R,S'-naphthylfenoterol). Optimization of analytes desorption process from the immunoextraction column was performed by factorial analysis and the sample calibration curves were made with spiked rat plasma samples containing 0.5-100 ng/ml of drugs. The cross-selectivity studies of the antibody were determined and the results suggested high selectivities toward R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol. The accuracy of assay was more than 96% while intra- and inter-day precision of assay were less than 12.4%. Stability studies (2h benchtop, freeze/thaw, and autosampler stability) were conducted and the analytes were stable through out studies. The validated method was used to determine the plasma concentration-time profiles of drugs after oral administration to rats of R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol.  相似文献   

5.
A new, fast and sensitive high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI‐MS/MS) method was developed and validated for isovalerylshikonin in rat plasma using emodin as internal standard (IS). The analyte was extracted from rat plasma with ethyl acetate, after 10% HCl treatment and protein precipitated by methanol. The compound was separated on an Ultimate? XB‐C18 analytical column using a mobile phase of methanol–10 mM ammonium acetate in water–acetonitrile containing 0.05% formic acid (45 : 10 : 45, v/v/v) with isogradient elution. The analyte was detected in negative ion mode using multiple‐reaction monitoring. The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 9 ng/mL for isovalerylshikonin. Correlation coefficient (r) value for the linear range of the analyte was greater than 0.99. The intra‐day and inter‐day precision and accuracy were better than 8.52%. The relative and absolute recovery was above 86% and no matrix effects were observed for isovalerylshikonin. This validated method provides a modern, rapid and robust procedure for the pharmacokinetic study of the two compounds in rats after intravenous administration to rats (n = 4). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A simple, rapid and sensitive HPLC method was developed and validated for the determination of four tricyclic antidepressants (TCAs): amitriptyline, doxepin, clomipramine (CLO) and imipramine, in pharmaceutical formulations and biological fluids. A Kromasil C(8 )analytical column (250 x 4 mm, 5 microm) was used for the separation, with a mobile phase consisting of 0.05 M CH(3)COONH(4) and CH(3)CN (45:55 v/v) delivered at 1.5 mL/min isocratically. Quantification was performed at 238 nm, with bromazepam (1.5 ng/microL) as the internal standard. The determination of TCAs in blood plasma was performed after protein precipitation. Urine analysis was performed by means of SPE using Lichrolut RP-18 Merck cartridges providing high absolute recoveries (> 94%). Direct analysis of urine was also performed after two-fold dilution. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity. Repeatability (n = 5) and between-day precision (n = 5) revealed RSD <13%. Recoveries from biological samples ranged from 91.0 to 114.0%. The absolute detection limit of the method was calculated as 0.1-0.6 ng in blood plasma and 0.2-0.5 ng in extracted urine or 0.4-0.7 in diluted urine. The method was applied to real samples of plasma from a patient under CLO treatment.  相似文献   

7.
《Analytical letters》2012,45(17):3245-3255
Abstract

In this study, a fast and sensitive liquid chromatography/tandem mass spectrometry method for the determination of captopril in human plasma was developed and validated. The analyte and enalaprilat, used as the internal standard, were extracted from plasma using methanol directly precipitate protein. Analysis was performed on a Lichrospher CN column with water (containing 0.1% formic acid) and methanol (60∶40, v/v) as the mobile phase. Linearity was assessed from 6.25 to 800 ng/ml in plasma. The analytical method proved to be applicable in a pharmacokinetic study of captopril after oral administration of 20 mg captopril tablet to 20 healthy volunteers.  相似文献   

8.
建立了超高效反相液相色谱-高分辨质谱方法以实现米格列奈及其3种异构体杂质的分离,以ACQUITY UPLC HSS T3(100 mm×2.1 mm,1.8 μ m)为色谱柱,以水-乙腈-正戊醇(75:25:1)(用甲酸调节pH至1.8)为流动相,流速为0.4 mL/min。根据Q Exactive四极杆/静电场轨道阱高分辨质谱的精确质量数及碎裂情况,发现了米格列奈及3种异构体存在碎片离子丰度的明显差异,确认其中两种为本次新发现的异构体杂质,并推断了米格列奈及3种异构体杂质可能的质谱裂解机理。经验证,该方法的灵敏度、重复性及线性均满足分析要求。在此基础上,对米格列奈异构体杂质的来源进行了探讨,发现异构体杂质1可在高温下降解产生,并对各企业的米格列奈钙原料样品进行了测定。  相似文献   

9.
A rapid, sensitive and specific high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the determination of oxatomide in human plasma. Flunarizine hydrochloride was employed as the internal standard (IS). The analytes were chromatographically separated on a Shimadzu Shim-pack VP-ODS C18 column (250 x 2.0 mm i.d.) with a mobile phase consisting of methanol and aqueous ammonium acetate solution (10 mm, pH 4.0; 85:15, v/v). Detection was performed on a single quadrupole mass spectrometer using an electrospray ionization interface with the selected-ion monitoring (SIM) mode. The method showed excellent linearity (r = 0.9995) over the concentration range of 0.5-500 ng/mL with good accuracy and precision. The intra- and inter-batch precisions were within 10% relative standard deviation. The recoveries were more than 90%. The validated method was successfully applied to a preliminary pharmacokinetic study of oxatomide in Chinese healthy male volunteers.  相似文献   

10.
Two polar benzo[c]phenanthridine alkaloids, chelerythrine (CHE) and dihydrochelerythrine (DHCHE), were extracted at 35 °C and 10 MPa (15 MPa for real samples) from real and spiked plasma samples with acceptable recoveries (95.1% and 81.0%, respectively) using near-critical CO2 modified with aqueous (1:1, v/v) methanol. The alkaloids were quantified by a liquid chromatographic/electrospray mass spectrometric (LC/ESI-MS) method on a Zorbax SB-CN column (75 mm × 4.6 mm, 3.5 μm particle size) using methanol (organic phase) and 50 mM ammonium formiate (aqueous phase) as a mobile phase. A linear gradient 0-1 min, isocratic at 60% organic phase (v/v); from 1.0 to 7.0 min, 60-71% organic phase (v/v); from 7.0 to 18.0 min, 71-60% organic phase (v/v) was applied. The limit of detection was 1.22 ng (3.50 pmol) for CHE and 0.95 ng (2.72 pmol) for DHCHE per 1 ml of the sample. The linearity of the calibration curves was satisfactory as indicated by coefficients of determination 0.9979 and 0.9995 for CHE and DHCHE, respectively. Repeatability and intermediate precision (average R.S.D.s) were 1.0-1.5%, accuracy was in the range 99.7-100.3%. Average recovery was 100.1% for both, standard solutions and spiked plasma extracts. Three samples of real rat plasma were extracted and analysed to test the method.  相似文献   

11.
A sensitive and specific method was developed and validated for the determination of mitiglinide in human plasma using liquid chromatographic separation with electrospray ionization tandem mass spectrometric detection. Acidified plasma samples were extracted with ethyl acetate. The chromatographic separation was performed on an Agilent Zorbax Eclipse Plus C(18) column with a mobile phase of methanol-10 mm ammonium acetate solution at a flow rate of 0.3 mL/min. Analytes were detected with an Agilent 6410 Triple qudrupole mass spectrometer equipped with an electrospray ionization source in positive multiple reaction monitoring mode: m/z 316.2 (precursor ion) to 298.2 (product ion) for mitiglinide and m/z 318.2 (precursor ion) to 120.2 (product ion) for the internal standard. This method was validated over a linear range of 0.5-4000 ng/mL for mitiglinide in human plasma. The lower limit of quantification (LLOQ) was 0.5 ng/mL, while a relative standard deviation (RSD) was less than 3.9%. The intra- and inter-run precision (as RSD, %) obtained from three validation runs were all less than 15%. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

12.
A reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC?CMS?CMS) method was developed and validated for the determination of fulvestrant in rat plasma. Sample preparation involved a liquid-liquid extraction using 1.0 mL of n-hexane?Cisopropanol (90:10, v/v) to extract the analyte from 0.1 mL of rat plasma. The analytes were separated on a phenyl-based column using the mobile phase consisting of methanol/water containing 5 mM ammonium acetate at the flow rate of 0.3 mL min?1. The analytes were monitored by tandem mass spectrometry under electrospray negative ionization mode. Linear calibration curves were generated over the fulvestrant concentration ranges of 0.05?C10.0 ng mL?1 in rat plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical methods (<15%). This developed and validated assay method was successfully employed to characterize the plasma concentration-time profile of fulvestrant after its intramuscular administration in rats at a dose of 10 mg kg?1.  相似文献   

13.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) method and a cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method were developed to separate and determine oleanolic acid (OA) and ursolic acid (UA) in Prunella vulgaris. HPLC separations were carried out on a Hedera ODS C18 column with methanol -H2O- acetic acid (85:15:0.3, v/v/v) as mobile phase at a flow-rate of 0.8 ml min?1. CD-MEKC analysis was performed on a CL1030 capillary electrophoresis system with a 6% (v/v) methanol solution (pH = 9.0) containing 10 mM disodium tetraborate, 10 mM sodium dihydrogen phosphate, 50 mM sodium dodecylsulfate (SDS), 15 mM 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD) as background electrolyte. The analytical results of HPLC and CD-MEKC were compared with each other. CD-MEKC has better analytical efficiency for two components, and the analytical time (15 min) was shorter than that of HPLC (35 min).  相似文献   

15.
A simple, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the determination of calceorioside B (CLB) in rat plasma. Detection was performed on a Thermo Scientific Hypersil Gold chromatography column using isocratic elution with a mobile phase of methanol–5 m m ammonium acetate–formic acid (70:30:0.1, v/v/v). Mass spectrometry was performed in selection reaction monitoring mode using a positive electrospray ionization interface. Good linearity was found for CLB in plasma in the linear range of 1.00–500 ng/mL (r > 0.9960). The validated method was successfully applied to the pharmacokinetic study of CLB in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive, rapid and simple high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for simultaneous determination of dipyridamole and salicylic acid in human plasma has been developed and validated. After the addition of diazepam and rosiglitazone as internal standard (IS), plasma samples were prepared by liquid-liquid extraction followed by an isocratic elution with methanol:2 mM ammonium acetate buffer (pH 4.25; 70/30, v/v) on a Shimadzu VP-ODS C(18) column (5 microm, 150 x 2.0 mm I.D.). Detection was performed on a quadrupole mass spectrometer with ESI interface operating in the positive-ion mode for dipyridamole and negative-ion mode for salicylic acid. Calibration curves were linear (r(2) > 0.99) over the concentration range 10-2500 ng/mL for dipyridamole and 30-4000 ng/mL for salicylic acid with acceptable accuracy and precision, respectively. The intra- and inter-batch precisions were less than 15% of the relative standard deviation. The limits of detection of dipyridamole and salicylic acid were 1 and 15 ng/mL, respectively. The validated HPLC-ESI-MS method was successfully applied to a preliminary pharmacokinetic study of fixed-dose combination of sustained-release dipyridamole/aspirin in Chinese healthy male volunteers.  相似文献   

17.
In this study, a sensitive and selective method based on liquid chromatography combined with diode array and tandem mass spectrometry detection (LC-DAD-MS/MS) was developed for the simultaneous quantitative determination of fenofibric acid, pravastatin and its main metabolites in human plasma. In this method, an automated solid-phase extraction (SPE) on disposable extraction cartridges (DECs) is used to isolate the compounds from the biological matrix and to prepare a cleaner sample before injection and analysis in the LC-DAD-MS/MS system. On-line LC-DAD-MS/MS system using an atmospheric pressure ionization (TurboIonSpray) was then developed for the simultaneous determination of pravastatin, 3-hydroxy isomeric metabolite (3-OH metab), pravalactone and fenofibric acid. The separation is obtained on an endcapped dodecyl silica based stationary phase using a mobile phase consisting of a mixture of acetonitrile, methanol and 5mM ammonium acetate solution (30:30:40, v/v/v). Sulindac and triamcinolone were used as internal standards (ISs). The detection of the fenofibric acid and sulindac was achieved by means of a DAD system. The MS/MS ion transitions monitored were m/z 442.2-->269.1, 442.2-->269.1, 424.3-->183.0 and 435.2-->397.2 for pravastatin, 3-OH metab, pravalactone and triamcinolone, respectively. The method was validated regarding stability, selectivity, extraction efficiency, response function, trueness, precision lower limit of quantitation and matrix effect. The limits of quantitation (LOQs) were around 0.50 ng/ml for pravastatin, 0.25 ng/ml for 3-OH metab, 0.05 ng/ml for pravalactone and 0.25 microg/ml for fenofibric acid.  相似文献   

18.
Styraxlignolide A is a pharmacologically active ingredient isolated from Styrax japonica Sieb. et Zucc. A rapid, selective, and sensitive liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for use in the quantification of styraxlignolide A in rat plasma. Styraxlignolide A was extracted from rat plasma using ethyl acetate at neutral pH. The analytes were separated on an Atlantis dC18 column using a mixture of methanol and ammonium formate (10 mM, pH 3.0) (70:30, v/v) and detected by tandem mass spectrometry in multiple reaction monitoring mode. The standard curve was linear (r2=0.9978) over the concentration range of 100?10000 ng/mL. The lower limit of quantification was 100 ng/mL using 50 μL of plasma sample. The coefficient of variation and relative error for intra‐ and inter‐assays at four QC levels were 1.6–8.3% and from ?12.0 to ?1.7%, respectively. The present method was applied successfully to the pharmacokinetic study of styraxlignolide A after intravenous administration of styraxlignolide A at a dose of 10 mg/kg in male Sprague–Dawley rats.  相似文献   

19.
Three standardised, capillary zone electrophoresis-electrospray ionisation mass spectrometry (CZE-ESI-MS) methods were developed for the analysis of six drug candidates and their respective process-related impurities comprising a total of 22 analytes with a range of functional groups and lipophilicities. The selected background electrolyte conditions were found to be: 60/40 v/v 10 mM ammonium formate pH 3.5/organic, 60/40 v/v 10 mM ammonium acetate pH 7.0/organic and 10 mM piperidine, pH 10.5, where the organic solvent is 50/50 v/v methanol/acetonitrile. The coaxial sheath flow consisted of either 0.1% v/v formic acid in 50/50 v/v methanol/water, or 10 mM ammonium acetate in 50/50 v/v methanol/water, depending on the mixture being analysed. Factor analysis and informational theory were used to quantify the orthogonality of the methods and predict their complementarities. The three selected CZE-ESI-MS methods allowed the identification of 21 out of 22 of all the drug candidates and their process-related impurities and provided orthogonality with four established high-performance liquid chromatography-mass spectrometry (HPLC-MS) methods. These methodologies therefore form the basis of a generic approach to impurity profiling of pharmaceutical drug candidates and can be applied with little or no analytical method development, thereby offering significant resource and time savings.  相似文献   

20.
A simple, sensitive and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric method was developed and validated for the quantification of lacidipine in human plasma using its structural analogue, amlodipine, as internal standard (IS). The method involves a simple single-step liquid-liquid extraction with tert-butyl methyl ether. The analyte was chromatographed on an Xterra MS C(18) reversed-phase chromatographic column by isocratic elution with 20 mM ammonium acetate buffer-acetonitrile (10:90, v/v; pH 6) and analyzed by mass spectrometry in the multiple reaction monitoring mode. The precursor to product ion transitions of m/z 456.4 --> 354.4 and m/z 409.3 --> 238.3 were used to measure the analyte and the I.S., respectively. The chromatographic run time was 1.5 min and the weighted (1/x(2)) calibration curves were linear over the range 0.1-25 ng ml(-1). Lacidipine was sensitive to temperature in addition to light. The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability and re-injection reproducibility. The limit of detection and lower limit of quantification in human plasma were 50 and 100 pg ml(-1), respectively. The within- and between-batch accuracy and precision were found to be well within acceptable limits (<15%). The analyte was stable after three freeze-thaw cycles (deviation <15%). The average absolute recoveries of lacidipine and amlodipine (IS) from spiked plasma samples were 51.1 +/- 1.3 and 50.3 +/- 4.9%, respectively. The assay method described here could be applied to study the pharmacokinetics of lacidipine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号