首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
王姗姗  王德华  黄凯云  唐田田 《物理学报》2011,60(10):103401-103401
利用波包演化和自关联函数方法对H-在金属面附近光剥离的波包动力学进行了研究.结果表明,金属面附近光剥离电子的波包演化和回归结构与H-到金属面的距离、激光脉冲的脉冲宽度和初始动量都有一定的关系.因此,可以通过改变离子表面距离和激光脉冲的参数对光剥离电子的动力学性质进行调控研究.除此之外,光剥离电子的镜像态寿命对波包的演化和自关联函数也会产生一定的影响:考虑镜像态寿命的影响时,随着时间的演化,波包概率密度的振幅逐渐减小,波包整体上有明显的衰减,寿命对波包演化过程中的干涉有削弱的作用;通过对电子波包的自关联函数研究,发现无限长寿命的电子波包有很好的量子回归现象,而当考虑寿命因素后光剥离电子波包随着时间的演化会发生周期性的坍塌和扩散,经过一段时间后,该回归现象消失.本文的理论研究可以为表面附近电子波包动力学的实验研究提供一定的参考价值. 关键词: 波包 演化和回归 自关联函数 金属面  相似文献   

2.
<正>The wave packet dynamics of the photodetachment of H~- near dielectric surface are studied by using the wave packet evolution and the autocorrelation function.The results show that the evolutions of the autocorrelation function and the wave packet in the time domain correspond well with each other. Besides,we consider the influence of the electronic state lifetime on the wave packet evolution and the autocorrelation function.Numerical simulation shows that the evolution of the photodetached electronic wave packet near the dielectric surface exhibits some properties similar to the time-resolved two-photon photoemission intensity of surface electron.  相似文献   

3.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

4.
We study control of wave packets with a finite accuracy, approaching it as quantum information processing. For a given control resolution, we define the analogs of several quantum bits within the shape of a single wave packet. These bits are based on wave packet symmetries. Analogs of one- and two-bit gates can be implemented using only free wave packet evolution and coordinate-dependent ac Stark shifts applied at the moments of fractional revivals. As in quantum computation, the gates form a logarithmically small set of basis operations which can be used to approximate any unitary transformation desired for quantum control of the wave packet dynamics. Numerical examples show the application of this approach to control vibrational wave packet revivals.  相似文献   

5.
The two‐state two‐path model is introduced as a minimized model to describe the quantum dynamics of an electronic wave packet in the vicinity of a conical intersection. It involves two electronic potential energy surfaces each of which hosts a pair of quasi‐classical trajectories over which the wave packet is assumed to be delocalized. When both trajectories evolve dynamically either diabatically or adiabatically, the full wave packet dynamics shows only features of the dynamics around avoided level crossings in the vicinity of the conical intersection. When one trajectory evolves adiabatically whereas the other trajectory follows a diabatic evolution, quantum mechanical interference of the wave packet components on each path generates Stueckelberg oscillations in the transition probability. These are surprisingly robust against a dissipative environment and, thus, should be a marker for conical intersections.  相似文献   

6.
We introduce power-law tail quantum wave packets. We show that they can be seen as eigenfunctions of a Hamiltonian with a physical potential. We prove that the free evolution of these packets presents an asymptotic decay of the maximum of the wave packets which is anomalous for an interval of the characterizing power-law exponent. We also prove that the number of finite moments of the wave packets is a conserved quantity during the evolution of the wave packet in the free space.  相似文献   

7.
The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied. We write the Schrödinger equation in a moving reference frame in which acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaffected by the uniform force field. This implies that, similar to in the case of a force-free motion, the uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem, the wave packet centroid moves according to classic Newton’s law of a particle experiencing the effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction spread in the configuration space but not in momentum space. Then, using Radon transform, we determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally, we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic tomogram evolution in the related tomographic space.  相似文献   

8.
The dynamics of an electronic Dirac wave packet evolving under the influence of an ultraintense laser pulse and an ensemble of highly charged ions is investigated numerically. Special emphasis is placed on the evolution of quantum signatures from single to multiple scattering events. We quantify the occurrence of quantum relativistic interference fringes in various situations and stress their significance in multiple-particle systems, even in the relativistic range of laser-matter interaction.  相似文献   

9.
The application of femtosecond pump-probe photoelectron spectroscopy to directly observe vibrational wave packets passing through an avoided crossing is investigated using quantum wave packet dynamics calculations. Transfer of the vibrational wave packet between diabatic electronic surfaces, bifurcation of the wave packet, and wave packet construction via nonadiabatic mixing are shown to be observable as time-dependent splittings of peaks in the photoelectron spectra.  相似文献   

10.
11.
Using the minimum uncertainty state of quantum integrable system H0 as initial state,the spatiotemporal evolution of the wave packet under the action of perturbed Hamiltonian is studied causally as in classical mechanics,Due to the existence of the avoided energy level crossing in the spectrum there exist nonlinear resonances between some paris of neighboring components of the wave packet,the deterministic dynamical evolution becomes very complicated and appears to be chaotic.It is proposed to use expectation values for the whole set of basic dynamical variables and the corresponding spreading widths to describe the topological features concisely such that the quantum chaotic motion can be studied in contrast with the quantum regular motion and well characterized with the asymptotic behaviors .It has been demonstrated with numerical results that such a wave packet has indeed quantum behaviors of ergodicity as in corresponding classical case.  相似文献   

12.
Employing the two-state model and the time-dependent wave packet method, the influence of femtosecond laser wavelength on the evolution of the double-minimum electronic excited state wave packet is numerically investigated. For different laser wavelengths, evolutions of the double-minimum electronic excited state wave packet with time and internuclear distance are different. One can control the evolution of the wave packet by varying the laser wavelength appropriately, which will benefit the light manipulation of atomic and molecular processes. Furthermore, study of the dynamics of the NaRb molecule may yield clues to creating an ultracold molecule.  相似文献   

13.
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.  相似文献   

14.
《Physics letters. A》1997,226(6):387-392
The time evolution of a Gaussian wave packet (GWP) confined in a quantum dot is numerically studied. The quantum dots are modelled by a two-dimensional square box and by the potential x4 + y4. For the case of an incommensurate energy spectrum the time evolution of observables has no global period. As a result this leads to ergodic phase portraits with a finite phase volume. For the spatially wide GWP the distribution function of quantum observables may be approximated as a Gaussian one. For the case of commensurate transition frequencies in the quantum well the time evolution of observables is periodical and the phase portraits have a zero phase volume.  相似文献   

15.
We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave.  相似文献   

16.
马宁  王美山  杨传路  马晓光  王德华 《中国物理 B》2010,19(2):23301-023301
Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the population of ground and double-minimum electronic states of the NaRb molecule. For the different laser wavelengths, the evolution of the wave packet of 6{ }^1\Sigma ^ + state with time and internuclear distance is different, and the different laser intensity brings different influences on the population of the electronic states of the NaRb molecule. One can control the evolutions of wave packet and the population in each state by varying the laser parameters appropriately, which will be a benefit for the light manipulation of atomic and molecular processes.  相似文献   

17.
利用量子力学的态叠加原理和算符劈裂法,对处于一维谐振子势中的初始态为高斯波包的中心位置的量子运动进行了研究.结果表明:其中心位置的量子运动呈现出经典谐振子的运动特性;波包的初始位置和初始时刻所加动量对波包中心位置量子动力学的影响与经典谐振子类似条件对运动的影响有相同的性质.本结果对理解复杂量子运动中的高斯波方法有一定的启示作用.  相似文献   

18.
The problem of the time evolution of an electron wave packet in a symmetric double quantum dot under the action of a strong alternating electric field and a slowly varying bias voltage is solved theoretically under the conditions when the electron subsystem can transfer its energy to a single resonator mode. It is shown that the possibility of energy exchange between the electron subsystem and the resonator does not hamper the formation of stable electronic states localized in the left or right quantum dot (i.e., polarized states possessing a positive or negative dipole moment). An adiabatic change in the bias voltage may alter the direction of the dipole moment of the given state (which corresponds to an electron transition from one quantum dot to the other).  相似文献   

19.
夏小建 《大学物理》2011,30(8):22-24,29
对经典一维受迫谐振子量子化,求解量子化后体系的时间演化算符.应用相空间准概率分布函数,研究了体系的量子特性.研究结果表明,初始为真空态,经过时间演化,系统波函数是一个二维高斯波包;波包中心的振幅和相位受到作用力的调制,成为调幅、调相波,波包中心的运动与经典受迫谐振子的运动形式相同.  相似文献   

20.
A new method is proposed for ab initio calculations of nonstationary quantum processes on the basis of a probability representation of quantum mechanics with the help of a positive definite function (quantum tomogram). The essence of the method is that an ensemble of trajectories associated with the characteristics of the evolution equation for the quantum tomogram is considered in the space where the quantum tomogram is defined. The method is applied for detailed analysis of transient tunneling of a wave packet. The results are in good agreement with the exact numerical solution to the Schrödinger equation for this system. The probability density distributions are obtained in the coordinate and momentum spaces at consecutive instances. For transient tunneling of a wave packet, the probability of penetration behind the barrier and the time of tunneling are calculated as functions of the initial energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号