首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coordination chemistry of the new pyridine-based, N2S2-donating 12-membered macrocycle 2,8-dithia-5-aza-2,6-pyridinophane (L1) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been investigated both in aqueous solution and in the solid state. The protonation constants for L1 and stability constants with the aforementioned metal ions have been determined potentiometrically and compared with those of ligand L2, which contains a N-aminopropyl side arm. The measured values show that Hg(II) in water has the highest affinity for both ligands followed by Cu(II), Cd(II), Pb(II), and Zn(II). For each metal ion considered, 1:1 complexes with L1 have also been isolated in the solid state, those of Cu(II) and Zn(II) having also been characterised by X-ray crystallography. In both complexes L1 adopts a folded conformation and the coordination environments around the two metal centres are very similar: four positions of a distorted octahedral coordination sphere are occupied by the donor atoms of the macrocyclic ligand, and the two mutually cis-positions unoccupied by L1 accommodate monodentate NO3- ligands. The macrocycle L1 has then been functionalised with different fluorogenic subunits. In particular, the N-dansylamidopropyl (L3), N-(9-anthracenyl)methyl (L4), and N-(8-hydroxy-2-quinolinyl)methyl (L5) pendant arm derivatives of L1 have been synthesised and their optical response to the above mentioned metal ions investigated in MeCN/H2O (4:1 v/v) solutions.  相似文献   

2.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

3.
A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.  相似文献   

4.
The Schiff bases of N(2)O(2) dibasic ligands, H(2)La and H(2)Lb are prepared by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one. Also tetra basic ligands, H(4)La and H(4)Lb are prepared by the condensation of aliphatic amines (a) and (b) with 6-formyl-5,7-dihydroxy-2-methylbenzopyran-4-one. New complexes of H(4)La and H(4)Lb with metal ions Mn(II), Ni(II) and Cu(II) are synthesized, in addition Mn(II) complexes with ligands H(2)La and H(2)Lb are also synthesized. Elemental and thermal analyses, infrared, ultraviolet-visible as well as conductivity and magnetic susceptibility measurements are used to elucidate the structure of the newly prepared metal complexes. The structures of copper(II) complexes are also assigned based upon ESR spectra study. All the complexes separated with the stoichiometric ratio (1:1) (M:L) except Mn-H(4)La and Mn-H(4)Lb with (2:1) (M:L) molar ratio. In metal chelates of the type 1:1 (M:L), the Schiff bases behave as a dinegative N(2)O(2) tetradentate ligands. Moreover in 2:1 (M:L) complexes, the Schiff base molecules act as mono negative bidentate ligand and binuclear complex is then formed. The Schiff bases were assayed by the disc diffusion method for antibacterial activity against Staphylococcus aureus and Escherichia coli. The antifungal activity of the Schiff bases was also evaluated against the fungi Aspergillus flavus and Candida albicans.  相似文献   

5.
1:1 Adducts of composition Cu(CH3-xClxCOO)4L and 1:2 adducts of composition Cu(CH3-xClxCOO)2L2 where x=1-3 and L is pyridine N-Oxide (PyNO), 2-picoline N-oxide (2-PicNO) or 3-picoline N-oxide (3-PicNO) have been isolated by the interaction of copper(II) chloroacetates with the appropriate N-oxide ligands. The adducts are soluble in methanol.  相似文献   

6.
Two Schiff base ligands bearing organic acid moiety, vis., N-(2-thienylmethylidene)-2-amino-4-chlorobenzoic acid (HL(1)) and N-(2-hydroxybenzylidene)-2-amino-4-chlorobenzoic acid (H(2)L(2)) have been synthesized by the interaction of 2-thiophenecarboxaldehyde and 2-hydroxybenzaldehyde with 2-amino-4-chlorobenzoic acid. Co(II), Ni(II), Cu(II) and Zn(II) complexes of these ligands have been prepared. They are characterized on the basis of analytical data, molar conductance, IR, (1)H NMR, UV-vis, mass spectra, magnetic measurements, thermal analysis and X-ray powder diffraction technique. The molar conductance data reveal that these complexes are non-electrolytes. The ligands are coordinated to the metal ions in a terdentate manner with ONO/ONS donor sites of the carbonyl oxygen, azomethine nitrogen and phenolic oxygen or thiophenic sulphur. An octahedral structure is proposed for the prepared metal complexes and some ligand field parameters (D(q), B and beta) in addition to CFSE were calculated. The thermal stability of the metal complexes is evaluated. The Schiff base ligands and their metal complexes have been tested against four species of bacteria as well as four species of fungi and the results have been compared with some known antibiotics.  相似文献   

7.
Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.  相似文献   

8.
A number of dicopper(II) complexes of reduced Schiff base ligands, N-(2-hydroxybenzyl)-amino acids [Cu2L2(H2O)x].yH2O (L = Sgly (1), D-Sala (2), L-Sala (3), DL-Sala (4), Sab2 (5), Sbal (6), Sab4 (7), Sval (8), Shis (9), Styr (10) and Stryp (11), x= 0-2 & y= 0-2) have been synthesized, and the solid-state structures of, and have been determined. The compounds and are binuclear in which the Cu(II) centres have square-pyramidal geometry with apical sites occupied by aqua ligands. In and one axial site is occupied by water and the other by an oxygen atom of the carboxylate group from the adjacent dimer through oxygen atoms to form 1D helical polymer. Variable temperature magnetic measurements of the dimer and helical polymer showed that they are typical for moderately strong antiferromagnetic coupling. All the complexes show significant catalytic activity on the oxidation of 3,5-di-tert-butylcatechol. The activity measured in terms of Kcat in the range 199-3800 h(-1) has been found to follow the order: 7>6>8>3>5 approximately 2 approximately 1>4 >10 >9 >11. The catalytic activity is found to increase with increasing the length of the methylene side chain of the amino acid in the reduced Schiff base ligands.  相似文献   

9.
In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H(3)A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H(3)A) with phtaldialdehyde (H(2)L), 4-methyl-2,6-di-formlyphenol (H(3)L(1)) and 4-t-butyl-2,6-di-formylphenol (H(3)L(2)) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H(2)L, H(3)L(1) and H(3)L(2) have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di-tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di-tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.  相似文献   

10.
Copper(II) complexes of N-benzothiazolesulfonamides (HL1=N-2-(4-methylphenylsulfamoyl)-6-nitro-benzothiazole, HL2=N-2-(phenylsulfamoyl)-6-chloro-benzothiazole, and HL3=N-2-(4-methylphenylsulfamoyl)-6-chloro-benzothiazole) with ammonia have been synthesized and characterized. The crystal structures of the [Cu(L1)2(NH3)2].2MeOH, [Cu(L2)2(NH3)2], and [Cu(L3)2(NH3)2] compounds have been determined. Compounds and present a distorted square planar geometry. In both compounds the metal ion is coordinated by two benzothiazole N atoms from two sulfonamidate anions and two NH3 molecules. Complex is distorted square-pyramidal. The Cu(II) ion is linked to the benzothiazole N and sulfonamidate O atoms of one of the ligands, the benzothiazole N of another sulfonamidate anion, and two ammonia N atoms. We have tested the superoxide dismutase (SOD)-like activity of the compounds and compared it with that of two dinuclear compounds [Cu2(L4)2(OCH3)2(NH3)2] and [Cu2(L4)2(OCH3)2(dmso)2] (HL4=N-2-(phenylsulfamoyl)-4-methyl-benzothiazole). In vitro indirect assays show that the dimeric complexes are better SOD mimics than the monomeric ones. We have also assayed the protective action provided by the compounds against reactive oxygen species over Deltasod1 mutant of Saccharomyces cerevisiae. In contrast to the in vitro results, the mononuclear compounds were more protective to SOD-deficient S. cerevisiae strains than the dinuclear complexes.  相似文献   

11.
Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.  相似文献   

12.
New azo-azomethine dyes were prepared by reaction of p-aminobenzoic acid, o-anisidine, o-nitroaniline, and p-bromoaniline with salicylaldehyde respectively to form azo compounds and then condensation by urea to form 4-(R-arylazo 2-salicylaldene)-urea azo-azomethine derivatives (I(a-d)). The complexes of these ligands with Ag(I), Cu(II), Zn(II) and Hg(II) metal ions were prepared. The structure of the free ligands and their complexes were characterized by using elemental analysis (C, H, N), (1)H NMR, IR and UV-Vis-spectra. The proton dissociation constants of the ligands and the stability constant of their complexes have been determined potentiometrically in 40% (v/v) alcohol-water medium as well as the stoichiometry of complexes were determined conductometrically. The data reveal that the stoichiometries for all complexes were prepared in molar ratios (1:1) and (1:2) (M:L). The electrolytic and nonelectrolytic natures of the complexes were assigned based on molar conductance measurements. The thermogravimetric (TG), and differential thermal analyses (DTA) were studied in nitrogen atmosphere with heating rate 10°C/min. The kinetic and thermodynamic parameters for thermal decomposition of complexes have been calculated by graphical method using Coats-Redfern (CR) method.  相似文献   

13.
A new family of copper(I) complexes with "glycoligands" containing a central saccharide scaffold, with 2-picolyl ether groups or 2-picolylamine or N-imidazolylamine groups, has been prepared and characterized. For this purpose, the following tetradentate ligands have been synthesized: methyl 2,3-di-O-(2-picolyl)-alpha-D-lyxofuranoside (L1), 1,5-anhydro-2-deoxy-3,4-di-O-(2-picolyl)-d-galactitol (L2), 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(2-picolyl)-alpha-D-xylofuranose (L3), and 5-(amino-N-(2-salicyl))-5-deoxy-1,2-O-isopropylidene-3-O-(methylimidazol-2-yl)-alpha-D-xylofuranose (L4). The ligands and the complexes were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopies, ESI mass spectrometry, and cyclic voltammetry. Collaterally with the experimental work, HF-DFT(B3LYP/6-31G*) computations were performed to obtain additional structural information. The Cu(I) complexes are found to be pentacoordinated. The redox properties and the O2-reactivity of the Cu(I)Ln complexes have been studied. Reactions of Cu(I) complexes with dioxygen in ethanol yield stable Cu(II) complexes as confirmed by UV-visible spectrophotometry and EPR spectroscopy.  相似文献   

14.
Dinuclear copper(II) complexes with N-substituted sulfonamide ligands as superoxide dismutase (SOD) mimics have been investigated. The new N-(thiazol-2-yl)toluenesulfonamide (Htz-tol) and N-(thiazol-2-yl)naphthalenesulfonamide (Htz-naf) ligands have been prepared and structurally characterized. The complexes derived from these ligands, [Cu(2)(tz-tol)(4)] (1) and [Cu(2)(tz-naf)(4)] (2), have been synthesized, and their crystal structure, magnetic properties, and EPR spectra were studied in detail. In both compounds the metal centers are bridged by four nonlinear triatomic NCN groups. The coordination geometry of the coppers in the dinuclear entity of 1 and 2 is distorted square planar with two N-thiazole and two N-sulfonamido atoms. Magnetic susceptibility data show a strong antiferromagnetic coupling, with -2J = 121.3 cm(-1) for compound 1 and -2J = 104.3 cm(-1) for compound 2. The EPR spectra of the polycrystalline samples of compounds 1 and 2 have been measured at the X- and Q-band frequencies at different temperatures. Above 20 K the spectra are characteristic of S = 1 species with zero-field splitting parameter D = 0.230 cm(-1) for compound 1 and 0.229 cm(-1) for compound 2. The EPR parameters are discussed in terms of the known binuclear structures. The complexes exhibit high SOD activity, as shown by the low IC(50) values obtained with the xanthine/xanthine oxidase/NBT assay: 0.13 microM for compound 1; 0.17 microM for compound 2.  相似文献   

15.
We describe the synthesis and characterization of two novel azo ligands, 4,5-dihydroxy-3,6-bis(2-hydroxyphenylazo)-2,7 naphthalene disulfonic acid (H2L) and 4,5-dihydroxy-3,6-bis(2-hydroxy-4-sulfophenylazo)-2,7-naphthalenedisulfonic acid (H2L1). The Cu(II), Ni(II), and Co(II) complexes of these ligands were prepared and characterized by infrared, UV–Vis, 1H- and 13C-NMR spectra, atomic absorption spectroscopy, mass spectrometry, elemental analyses, thermogravimetric analysis, conductivity, cyclic voltammetry, and magnetic measurements. The results suggest that the complexes have a 2:1 (metal:ligand) molar ratio, involving binuclear azo ligands with an ONO donor set. Metal ion uptake studies were conducted with a batch technique. Preliminary histological studies were also made. The results indicate that the azo ligands have high thermal stability, good metal extraction capacity, and favorable dying properties with certain tissues.  相似文献   

16.
卢晓霞  秦圣英 《化学学报》1999,57(12):1364-1369
由二苯并-18-冠-6出发,合成了4',4',5',5'-四(2-羟基苯亚甲基亚氨基)二苯并-18-冠-6(L^1H~4)及其5位取代衍生物(取代基R=CH~3,OH,OCH~3,Cl,NO~2)L^2H~4~L^6H~4。它们依次与硝酸钾和醋酸钴反应,制得1:1:2的钾(I)/双钴(II)配合物LCo~2.2H~2O.KNO~3(L=L^5,L^6)或其某些二氧加合物LCo~2(2O~2).2H~2O.KNO~3(L=L^1~L^4)。考察了取代基R和冠醚环配合的钾离子对二氧加合物形成及稳定性的影响。结果表明,含吸电子基(R=Cl,NO~2)的钾(I)/双钴(II)配合物不能形成二氧加合物;冠环中的钾离子会导致二氧加合物中两个Co-O~2键热稳定性的差异。  相似文献   

17.
Copper(II) complexes of peptides containing two or three histidyl residues (Ac-HisGlyHis-OH, Ac-HisGlyHis-NHMe, Ac-HisHisGlyHis-OH and Ac-HisHisGlyHis-NHMe) have been studied by potentiometric, UV-Vis, EPR and CD spectroscopic measurements. The imidazole nitrogen atoms are described as the primary metal binding sites of all ligands resulting in the formation of various macrochelates in the pH range 4 to 7. The (Nim, N-, Nim)-co-ordinated [CuH-1L]0+ complexes were mainly detected in samples containing free carboxylates at the C-termini, whilst the [CuH-2L]-(0) complexes were the predominant species in slightly alkaline solution and their binding modes were described via 4N-co-ordination (Nim, N-, N-, Nim) in (7,5,6)-membered fused chelate rings. Deprotonation and co-ordination of the third amide nitrogens were detected above pH approximately 9 in all cases.  相似文献   

18.
Two new N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle, 1-benzyl-4,7-dimethyl-1,4,7-triazacyclononane (L2) and 1,4,7-tris(3-cyanobenzyl)-1,4,7-triazacyclononane (L3), have been prepared and, together with 1,4-dimethyl-1,4,7-triazacyclononane (L1), have been used to synthesize the corresponding hydroxo-bridged binuclear copper (II) complexes, [Cu2(mu-OH)2L2](ClO4)2.xH2O (1 L = L1, x = 0; 2 L = L2, x = 1; 3 L = L3, x = 2). The X-ray crystal structures of all three complexes reveal the presence of [Cu2(mu-OH)2]2+ cores capped by pairs of facially coordinating tacn ligands so that the Cu(II) centers reside in distorted square pyramidal coordination environments. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -36.4 cm(-1)) between the Cu(II) centers in 1, while the centers in 2 and 3 have been shown to interact ferromagnetically (J = 11.2 and 49.3 cm(-1), respectively). The variation in the strength and sign of these interactions has been rationalized in terms of the differing geometries of the [Cu2(mu-OH)2]2+ cores. The ability of the Cu(II) complexes to cleave phosphate ester bonds has been probed using the model phosphate ester bis(4-nitrophenyl)phosphate (BNPP) at pH 7.4 and a temperature of 50 degrees C. The measured rate constant for 3 (3 x 10(-4) s(-1)) is significantly greater than those previously reported for the Cu(II) complexes of the fully alkylated tacn ligands, Me3tacn and iPr3tacn, which until now have been rated as the most effective tacn-based phosphate ester cleavage agents.  相似文献   

19.
Two series of square planar, diamagnetic, neutral complexes of nickel(II), palladium(II), and platinum(II) containing two N,N-coordinated o-diiminobenzosemiquinonate(1-) pi radical ligands have been synthesized and characterized by UV-vis and (1)H NMR spectroscopy: [M(II)((2)L(ISQ))(2)], M = Ni (1), Pd (2), Pt (3), and [M(II)((3)L(ISQ))(2)] M = Ni (4), Pd (5), Pt (6). H(2)[(2)L(PDI)] represents 3,5-di-tert-butyl-o-phenylenediamine and H(2)[(3)L(PDI)] is N-phenyl-o-phenylenediamine; (L(ISQ))(1-) is the o-diiminobenzosemiquinonate pi radical anion, and (L(IBQ))(0) is the o-diiminobenzoquinone form of these ligands. The structures of complexes 1, 4, 5, and 6 have been (re)determined by X-ray crystallography at 100 K. Cyclic voltammetry established that the complete electron-transfer series consisting of a dianion, monoanion, neutral complex, a mono- and a dication exists: [M(L)(2)](z)z = -2, -1, 0, 1+, 2+. Each species has been electrochemically generated in solution and their X-band EPR and UV-vis spectra have been recorded. The oxidations and reductions are invariably ligand centered. Two o-diiminobenzoquinones(0) and two fully reduced o-diiminocatecholate(2-) ligands are present in the dication and dianion, respectively, whereas the monocations and monoanions are delocalized mixed valent class III species [M(II)(L(ISQ))(L(IBQ))](+) and [M(II)(L(ISQ))(L(PDI))](-), respectively. One-electron oxidations of 1 and trans-6 yield the diamagnetic dications [cis-[Ni(II)((2)L(ISQ))((2)L(IBQ))](2)]Cl(2) (7) and [trans-[Pt(II)((3)L(ISQ))((3)L(IBQ))](2)](CF(3)SO(3))(2) (8), respectively, which have been characterized by X-ray crystallography; both complexes possess a weak M.M bond and the ligands adopt an eclipsed configuration due to weak bonding interactions via pi stacking.  相似文献   

20.
Lo KK  Lee TK 《Inorganic chemistry》2004,43(17):5275-5282
Two luminescent ruthenium(II) polypyridine complexes containing a biotin moiety [Ru(bpy)(2)(L1)](PF(6))(2) (1) and [Ru(bpy)(2)(L2)](PF(6))(2) (2) (bpy = 2,2'-bipyridine; L1 = 4-(N-((2-biotinamido)ethyl)amido)-4'-methyl-2,2'-bipyridine; L2 = 4-(N-((6-biotinamido)hexyl)amido)-4'-methyl-2,2'-bipyridine) have been synthesized and characterized, and their photophysical and electrochemical properties have been studied. Upon photoexcitation, complexes 1 and 2 display intense and long-lived triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ru) --> pi*(L1 or L2)) emission in fluid solutions at 298 K and in low-temperature glass. We have studied the binding of these ruthenium(II) biotin complexes to avidin by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, competitive assays using native biotin, and quenching experiments using methyl viologen. On the basis of the results of these experiments, a homogeneous competitive assay for biotin has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号