首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second-generation fluorescent sensor for Zn(2+) from the Zinpyr family, ZP4, has been synthesized and characterized. ZP4 (Zinpyr-4, 9-(o-carboxyphenyl)-2-chloro-5-[2-(bis(2-pyridylmethyl)aminomethyl)-N-methylaniline]-6-hydroxy-3-xanthanone) is prepared via a convergent synthetic strategy developed from previous studies with these compounds. ZP4, like its predecessors, has excitation and emission wavelengths in the visible range ( approximately 500 nm), a dissociation constant (K(d)) for Zn(2+) of less than 1 nM and a high quantum yields (Phi = approximately 0.4), making it well suited for biological applications. A 5-fold fluorescent enhancement is observed under simulated physiological conditions corresponding to the binding of the Zn(2+) cation to the sensor, which inhibits a photoinduced electron transfer (PET) quenching pathway. The metal-binding stereochemistry of ZP4 was evaluated through the synthesis and X-ray structural characterization of [M(BPAMP)(H(2)O)(n)](+) complexes, where BPAMP is [2-(bis(2-pyridylmethyl)aminomethyl)-N-methylaniline]-phenol and M = Mn(2+), Zn(2+) (n = 1) or Cu(2+) (n = 0).  相似文献   

2.
To prepare fluorescent zinc sensors with binding affinities lower than that of the parent 9-(o-carboxyphenyl)-2,7-dichloro-4,5-bis(bis(2-pyridylmethyl)methylaminomethyl)-6-hydroxy-3-xanthenone (ZP1), dimethylated and tetramethylated derivatives were synthesized having either two or four of the pyridyl subunits methylated at the 6-position. Like the parent ZP1, both Me(2)ZP1 and Me(4)ZP1 exhibit increased fluorescence in the presence of Zn(2+). The integrated emission of Me(2)ZP1 increases 4-fold in the presence of excess zinc, whereas Me(4)ZP1 displays 2.5-fold enhanced fluorescence for Zn(2+). Methylating the 6-positions of the pyridyl rings raises the dissociation constant of the sensors and lowers the pK(a) values associated with the tertiary amine ligands in a systematic manner. The properties of the dimethylated Me(2)ZP1 dye resemble those of ZP1, but the tetramethylated Me(4)ZP1 differs greatly from ZP1 in terms of its brightness, affinity toward Zn(2+), exchange kinetics, and metal sensitivity. Both Me(2)ZP1 and Me(4)ZP1 can enter HeLa cells and signal the presence of Zn(2+). Staining caused by both dyes is punctate, with localization patterns resembling that observed for ZP1.  相似文献   

3.
The characteristics as a chemosensor of the compound 3-methyl-6,8-di(2-pyridyl)-[1,2,3]triazolo[5',1':6,1]pyrido[2,3-]pyrimidine (1) have been analyzed. Interaction with Cu(2+) produces a quenching of the fluorescence, while interaction with Zn(2+) leads to a quenching of the fluorescence followed by a bathochromic shift. The crystal structure of the Zn(1)(H(2)O)(3)(ClO(4))(2) x H(2)O complex shows the coordination of Zn(2+) through the terpyridine moiety. The octahedral site is completed by three water molecules. Interactions of the Zn(2+) complex with the anions sulfate, nitrate, nitrite, and dihydrogenphosphate in ethanol produce hypsochromic shifts and restoration of the fluorescence whose magnitude depends on the anion involved. The maximum interaction is observed for H(2)PO(4)(-). Interactions of the Zn(2+) complex with the amino acids l-aspartate and l-glutamate have also been explored showing a higher interaction with l-aspartate.  相似文献   

4.
The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.  相似文献   

5.
The synthesis and characterization of six novel mononuclear Mn(II) and Mn(III) complexes are presented. The tripodal ligands 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (HL1), 2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol (HL2), (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)(2-hydroxybenzyl)amine (HL3) and 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-bromophenol were used. All ligands provide an N3O donor set. The compounds [Mn(II)(HL1)Cl2].CH3OH (1), [Mn(III)(L1)Cl2] (2), [Mn(II)(HL2)(EtOH)Cl2] (3), [Mn(II)(HL3)Cl2].CH3OH (4), [Mn(III)(HL4)Br2] (5) and [Mn(III)(L1)(tcc)] (6), with tcc = tetrachlorocatecholate dianion, were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR and UV-vis spectroscopy, cyclic voltammetry, and elemental analysis. Compound 1 crystallizes in the triclinic space group P1, compounds 2, 3 and 4 were solved in the monoclinic space group P2(1)/c, whereas the structure determination of and succeeded in the orthorhombic space groups Pbca and P2(1)2(1)2(1), respectively. Notably, the crystal structures of 1 and 3 are the first Mn(II) complexes featuring a non-coordinating phenol moiety. Compound 2 oxidizes 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations with a turnover number of kcat = 173 h(-1). The electronic influence of different substituents in para position of the phenol group is lined out.  相似文献   

6.
The kinetics of cyclization of 2-hydroxypropyl p-nitrophenyl phosphate (1) promoted by two mononuclear Zn(II) catalytic complexes of bis(2-pyridylmethyl)benzylamine (4) and bis(2-methyl 6-pyridylmethyl)benzylamine (5) in methanol were studied under (s)(s)pH-controlled conditions (where (s)(s)pH refers to [H(+)] activity in methanol). Potentiometric titrations of the ligands in the absence and presence of Zn(2+) and a non-reactive model for 1 (2-hydroxylpropyl isopropyl phosphate (HPIPP, 6)) indicate that the phosphate is bound tightly to the 4:Zn(II) and 5:Zn(II) complexes as L:Zn(II):6(-), and that each of these undergoes an additional ionization to produce L:Zn(II):6(-):((-)OCH(3)) or a bound deprotonated form of the phosphate, L:Zn(II):6(2-). Kinetic studies as a function of [L:Zn(II)] indicate that the rate is linear in [L:Zn(II)] at concentrations well above those required for complete binding of the substrate. Plots of the second order rate constants (defined as the gradient of the rate constant vs. [complex] plot) vs. (s)(s)pH in methanol are bell-shaped with rate maxima of 23 dm mol(-1) s(-1) and 146 dm mol(-1) s(-1) for 4:Zn(II) and 5:Zn(II), respectively, at their (s)(s)pH maxima of 10.5 and 10. A mechanism is proposed that involves binding of one molecule of complex to the phosphate to yield a poorly reactive 1 : 1 complex, which associates with a second molecule of complex to produce a transient cooperative 2 : 1 complex within which the cyclization of 1 is rapid. The observations support an effect of the reduced polarity solvent that encourages the cooperative association of phosphate and two independent mononuclear complexes to give a reactive entity.  相似文献   

7.
Zinc complexes of the unsymmetric, binucleating Schiff base ligands 3-(N-[2-(dimethylamino)ethyl]iminomethyl)-salicylic acid (H2L1) and 3-[N-(2-pyridylmethyl)iminomethyl]-salicylic acid (H2L2) have been studied in the solid state as well as in solution. Reaction of ZnX2 (X = NO3-, CH3CO2-) with 3-formylsalicylic acid and N,N-dimethylethylenediamine at neutral or slightly acidic pH afforded the dinuclear complexes [Zn2(HL1)2(H2O)2](NO3)2.2H2O (1a) and [Zn2(HL1)2(CH3CO2)2].6H2O (1b). The Zn ions, which are 3.126(1) A (1a) and 3.2665(7) A (1b) apart, are bridged by two phenolate oxygens. Further coordination sites of the ligand are the imine nitrogen and carboxylate oxygen, while the amino nitrogen is protonated. On dissolution in DMSO or DMF, 1a and 1b are converted into the mononuclear species [Zn(HL1)]+. Cleavage of the dinuclear complexes is accompanied by migration of the ammonium proton to the carboxylate group and coordination of the amino nitrogen to Zn. Reaction of 1b with base yielded the novel tetranuclear Zn complex [Zn4(L1)4].6.5H2O (2) that exhibits coordination number asymmetry. The four Zn ions having N2O3 and N2O4 coordination environments are located at the corners of a nearly square-planar rectangle. H2L2 binds Zn via the phenolate oxygen and, imine and pyridine nitrogens in acidic solution. Deprotonation of the carboxyl group in alkaline solution gave the tetranuclear compound [Zn4(L2)4].4.5H2O (4) with a cubane-like Zn4O4 core.  相似文献   

8.
The synthesis, characterization, and water oxidation activity of mononuclear ruthenium complexes with tris(2-pyridylmethyl)amine (TPA), tris(6-methyl-2-pyridylmethyl)amine (Me(3)TPA), and a new pentadentate ligand N,N-bis(2-pyridinylmethyl)-2,2'-bipyridine-6-methanamine (DPA-Bpy) have been described. The electrochemical properties of these mononuclear Ru complexes have been investigated by both experimental and computational methods. Using Ce(IV) as oxidant, stoichiometric oxidation of water by [Ru(TPA)(H(2)O)(2)](2+) was observed, while Ru(Me(3)TPA)(H(2)O)(2)](2+) has much less activity for water oxidation. Compared to [Ru(TPA)(H(2)O)(2)](2+) and [Ru(Me(3)TPA)(H(2)O)(2)](2+), [Ru(DPA-Bpy)(H(2)O)](2+) exhibited 20 times higher activity for water oxidation. This study demonstrates a new type of ligand scaffold to support water oxidation by mononuclear Ru complexes.  相似文献   

9.
The commonly used Zn(2+) sensors 6-methoxy-8-p-toluenesulfonamidoquinoline (TSQ) and Zinquin have been shown to image zinc proteins as a result of the formation of sensor-zinc-protein ternary adducts not Zn(TSQ)(2) or Zn(Zinquin)(2) complexes. The powerful, cell-permeant chelating agent N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) is also used in conjunction with these and other Zn(2+) sensors to validate that the observed fluorescence enhancement seen with the sensors depends on intracellular interaction with Zn(2+). We demonstrated that the kinetics of the reaction of TPEN with cells pretreated with TSQ or Zinquin was not consistent with its reaction with Zn(TSQ)(2) or Zn(Zinquin)(2). Instead, TPEN and other chelating agents extract between 25 and 35% of the Zn(2+) bound to the proteome, including zinc(2+) from zinc metallothionein, and thereby quench some, but not all, of the sensor-zinc-protein fluorescence. Another mechanism in which TPEN exchanges with TSQ or Zinquin to form TPEN-zinc-protein adducts found support in the reactions of TPEN with Zinquin-zinc-alcohol dehydrogenase. TPEN also removed one of the two Zn(2+) ions per monomer from zinc-alcohol dehydrogenase and zinc-alkaline phosphatase, consistent with its ligand substitution reactivity with the zinc proteome.  相似文献   

10.
Detection of chelatable zinc (Zn(2+)) in biological studies has attracted much attention recently, because chelatable Zn(2+) plays important roles in many biological systems. Lanthanide complexes (Eu(3+), Tb(3+), etc.) have excellent spectroscopic properties for biological applications, such as long luminescence lifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high water solubility. Herein, we present the design and synthesis of a novel lanthanide sensor molecule, [Eu-7], for detecting Zn(2+). This europium (Eu(3+)) complex employs a quinolyl ligand as both a chromophore and an acceptor for Zn(2+). Upon addition of Zn(2+) to a solution of [Eu-7], the luminescence of Eu(3+) is strongly enhanced, with high selectivity for Zn(2+) over other biologically relevant metal cations. One of the important advantages of [Eu-7] is that this complex can be excited with longer excitation wavelengths (around 340 nm) as compared with previously reported Zn(2+)-sensitive luminescent lamthanide sensors, whose excitation wavelength is at too high an energy level for biological applications. The usefulness of [Eu-7] for monitoring Zn(2+) changes in living HeLa cells was confirmed. This novel Zn(2+)-selective luminescent lanthanide chemosensor [Eu-7]should be an excellent lead compound for the development of a range of novel luminescent lanthanide chemosensors for biological applications.  相似文献   

11.
LI Xin-Fa CAO Rong 《结构化学》2009,28(11):1439-1447
Eight neutral mononuclear complexes constructed from transition metals (M = Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ)) and ligands N-(2-pyridylmethyl)-L-phenylalanine (L-Hpmpa) and N-(2-pyridylmethyl)-L-tyrosine (L-Hpmtyr) have been synthesized by both hydrothermal and conventional room temperature reactions. Four of them have been structurally characterized by single-crystal X-ray diffractions. They are: [Co(L-pmpa)2·2H2O] 1, [Ni(L-pmpa)2·2H2O] 2, [Cu(L-pmpa)2·2H2O] 3 and [Cu(L-pmtyr)2·2H2O] 4. Single-crystal X-ray analysis, IR and elemental analysis revealed that complexes 1, 2 and 3 are isostructural. Powder X-ray diffraction, IR and elemental analysis revealed that complexes 4, 5 (Zn[L-pmtyr]2·2H2O), 6 (Cd[L-pmtyr]2·2H2O), 7 (Co[L-pmtyr]2·2H2O) and 8 (Ni[L-pmtyr]2·2H2O) are isostructural. The photoluminescence properties of L-Hpmtyr ligand, compounds 5 and 6 were also investigated.  相似文献   

12.
The reaction of the hexacyanometalates K3[M(1)(CN)6] (M(1) = Cr(III), Fe(III), Co(III)) with the bispidine complexes [M(2)(L(1))(X)](n+) and [M(2)(L(2))(X)](n+) (M(2) = Mn(II), Ni(II), Cu(II); L(1) = 3-methyl-9-oxo-2,4-di-(2-pyridyl)-7-(2-pyridylmethyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; L(2) = 3-methyl-9-oxo-7-(2-pyridylmethyl)-2,4-di-(2-quinolyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylic acid dimethyl ester; X = anion or solvent) in water-methanol mixtures affords trinuclear complexes with cis- or trans-arrangement of the bispidine-capped divalent metal centers around the hexacyanometalate. X-ray structural analyses of five members of this family of complexes (cis-Fe[CuL(2)]2, trans-Fe[CuL(1)]2, cis-Co[CuL(2)]2, trans-Cr[MnL(1)]2, trans-Fe[MnL(1)]2) and the magnetic data of the entire series are reported. The magnetic data of the cyanide bridged, ferromagnetically coupled cis- and trans-Fe[ML]2 compounds (M = Ni(II), Cu(II)) with S = 3/2 (Cu(II)) and S = 5/2 (Ni(II)) ground states are analyzed with an extended Heisenberg Hamiltonian which accounts for anisotropy and zero-field splitting, and the data of the Cu(II) systems, for which structures are available, are thoroughly analyzed in terms of an orbital-dependent Heisenberg Hamiltonian, in which both spin-orbit coupling and low-symmetry ligand fields are taken into account. It is shown that the absence of single-molecule magnetic behavior in all spin clusters reported here is due to a large angular distortion of the [Fe(CN)6](3-) center and the concomitant quenching of orbital angular momentum of the Fe(III) ((2)T2g) ground state.  相似文献   

13.
A new 2,6-bis(5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-4-methylphenol (1) serves as a highly selective and sensitive fluorescent probe for Zn(2+) in a HEPES buffer (50 mM, DMSO:water = 1:9 (v/v), pH = 7.2) at 25 °C. The increase in fluorescence in the presence of Zn(2+) is accounted for by the formation of dinuclear Zn(2+) complex [Zn(2)(C(35)H(25)N(6)O)(OH)(NO(3))(2)(H(2)O)] (2), characterized by X-ray crystallography. The fluorescence quantum yield of the chemosensor 1 is only 0.019, and it increases more than 12-fold (0.237) in the presence of 2 equiv of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to be either unchanged or weakened. By incubation of cultured living cells (A375 and HT-29) with the chemosensor 1, intracellular Zn(2+) concentrations could be monitored through selective fluorescence chemosensing.  相似文献   

14.
The new heterodinuclear complex [Fe(III)Zn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-[(2-hydroxybenzyl)(2-pyridylmethyl)]-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized by X-ray crystallography, which reveals that the complex cation has an Fe(III)Zn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Solution studies of 1 indicate that a pH-induced change of the bridging acetate occurs, and the formation of an active [(OH)Fe(III)Zn(II)(OH(2))] species as a highly efficient catalyst under weakly acidic conditions for phosphate diesters hydrolysis is proposed.  相似文献   

15.
The employment of a strategy based on nucleophilic substitution, rather than Schiff base condensation, for the preparation of 1,2,4-triazole-based ligands has been investigated and has led to the synthesis of two new ligands, 4-amino-3,5-bis{[N-(2-pyridylmethyl)-N-(4-toluenesulfonyl)amino]methyl}-4H-1,2,4-triazole (TsPMAT, 14) and 4-amino-3,5-bis{[(2-pyridylmethyl)amino]methyl}-4H-1,2,4-triazole (PMAT, 15). These are the first examples of bis(terdentate) ligands incorporating the 1,2,4-triazole unit. TsPMAT (14) forms a dinuclear 2:2 complex with Co(BF4)2.6 H2O even when reacted in a metal-to-ligand molar ratio of 2:1. Similarly, the reaction of PMAT (15) with Mn(ClO4)2.6H2O or M(BF4)2.6 H2O (M=Fe, Co, Ni, Zn) in a ligand-to-metal molar ratio of 1:1 has afforded a series of complexes with the general formula [M(II) (2)(PMAT)2]X4. The metal centres in these complexes of TsPMAT (14) and PMAT (15) are encapsulated by two ligand molecules and doubly bridged by the N2 units of the 1,2,4-triazole moieties, which gives rise to N6 coordination spheres that are strongly distorted from octahedral, as evidenced by the X-ray crystal structure analyses of [Co(II) (2)(TsPMAT)(2)](BF(4))(4)6 MeCN (246 MeCN) and [Fe(II) 2(PMAT)2](BF4)4DMF (27DMF). Studies of the magnetic properties of [Co(II) 2(TsPMAT)2](BF4)4.4 H2O (244 H2O), [Mn(II) 2(PMAT)2](ClO4)4 (26), and [Co(II) 2(PMAT)2](BF4)4 (28) have revealed weak antiferromagnetic coupling (J=-3.3, -0.16, and -2.4 cm(-1), respectively) between the two metal centres in these complexes.  相似文献   

16.
The syntheses and X-ray structures of [Co(Me-tpa)O(2)COZnCl(3)], [Co(pmea)O(2)COZnCl(3)].H(2)O [Co(trpyn)O(2)COZn(OH(2))(4)OCO(2)Co(trpyn)](ZnCl(4))(2).H(2)O, [Co(trpyn)(O(2)COH)]ZnCl(4).3H(2)O and [Co(trpyn)(O(2)CO)]ClO(4) are reported (Me-tpa = [(6-methyl-2-pyridyl)methyl]bis(2-pyridylmethyl)amine, pmea = bis(2-pyridylmethyl)-2-(2-pyridylethyl)amine, trpyn = tris(2-(1-pyrazolyl)ethyl)amine). The chelated bicarbonate complex [Co(trpyn)(O(2)COH)]ZnCl(4).3H(2)O is isolated as a crystalline solid from an acidic solution of the parent carbonate [Co(trpyn)(O(2)CO)]ClO(4), and X-ray structural analysis shows that lengthening of the C[double bond, length as m-dash]O(exo) bond and shortening of the C-O(endo) bond accompanies protonation. The bimetallic complex [Co(Me-tpa)O(2)COZnCl(3)] results from the unexpected coordination of ZnCl(3)(-) to the exo O atom of a chelated carbonate ligand. This complex is obtained from both acidic and neutral solutions in which [Zn(2+)] = 1.0 M, while the structurally similar complex [Co(pmea)O(2)COZnCl(3)].H(2)O is isolated from an analogous neutral solution. The trimetallic complex [Co(trpyn)O(2)COZn(OH(2))(4)OCO(2)Co(trpyn)](ZnCl(4))(2).H(2)O crystallises on prolonged standing of [Co(trpyn)(O(2)CO)]ClO(4) in a neutral solution having [Zn(2+)] = 1.0 M. The Zn-O bond lengths in all three complexes are indicative of bonds of significant strength. DFT calculations show that the nature of the bonding interaction between the Co(iii) ion and the endo O atoms of the carbonate ligand remain essentially unaffected by coordination of Zn(2+) to the exo O atom. They also show that such coordination of Zn(2+) decreases the C-O(exo) bond order.  相似文献   

17.
The new biphenol-based tetranucleating ligand, 2,2',6,6'-tetrakis(N,N-bis(2-pyridylmethyl)aminomethyl)-4,4'-biphenolate, dbpbp2-, comprises two linearly disposed phenolato-hinged dinucleating heptadentate units, each of which offer one O and three N donors to a total of four metal ions. The ligand has been isolated as the zinc chloride complex [Zn4(dbpbp)Cl4]2+, and the ZnII ions have been completely or partially substituted by CuII, FeIII, CoII, and CoIII in metathesis reactions. Similarly, the chloride ligands of [Zn4(dbpbp)Cl4]2+ have been exchanged for solvent molecules (acetonitrile and/or water) and bridging carboxylate ligands. The resulting complexes have been characterized by single-crystal X-ray diffraction, ESI mass spectrometry (ESI-MS), cyclic voltammetry (CV), and EPR spectroscopy. The structures containing [M4(dbpbp)Cl4]2+ with M = ZnII or CuII exhibit 2-D polymeric honeycomb sheets in which intermolecular M...Cl interactions bridge between adjacent [M4(dbpbp)Cl4]2+ cations. Two mixed-metal tetrabenzoate complexes [M4(dbpbp)(O2CC6H5)4]2+/3+ have also been prepared, namely a stoichiometric CuII2ZnII2 complex and a nonstoichiometric FeIII/ZnII system. In the latter case, ESI-MS identifies FeZn3, Fe2Zn2, and Zn4 species, and X-ray crystallography suggests an average composition of Fe0.8Zn3.2. Preparation of a CoII4 complex by metathesis was considerably more difficult than preparation of [Cu4(dbpbp)Cl4]2+, requiring both a large excess of the cobalt source and the presence of auxiliary benzoate. In the presence of 2 equiv of benzoate per starting [Zn4(dbpbp)Cl4]2+ unit and excess CoII, dioxygen binds as peroxide at each end of the molecule to give the CoIII4 complex [Co4(dbpbp)(O2)2(O2CC6H5)2]4+. This latter complex, together with new tetra- and hexametallic benzenedicarboxylato- and benzenetricarboxylato-bridged complexes of dinuclear [Co2(O2)(bpbp)]3+ units (bpbp- = 2,6-bis(N,N-bis-(2-pyridylmethyl)aminomethyl)-4-tert-butyl-phenolate), is a module for potential construction of 1-D and 2-D coordination polymers/metal-organic frameworks (MOFs) capable of reversible O2 binding.  相似文献   

18.

Abstract  

An earlier developed alkylating path leading to tetraalkylated diaminomaleonitrile derivatives was explored. Attempts to explain the reactivity of the representative dialkylated diaminomaleonitrile 2,3-bis[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile during the alkylation reaction were performed using X-ray and density functional theory (DFT) studies. The condensed Fukui functions accompanied by softness indices were found to be useful in explaining its reactivity observed during the reaction. The values of the Fukui functions and condensed softness for electrophilic attack calculated from Mulliken, L?wdin, and natural population analyses closely corresponded to the experimental observations. When 2,3-bis[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile disodium salt was treated with dimethyl sulfate at lower temperatures the alkylation reaction prevailed, whereas at higher temperatures the alkylating agent acted as a hydride anion acceptor, which favored the elimination reaction. The tetraalkylated dinitrile 2,3-bis[methyl(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile was used in the synthesis of tribenzoporphyrazine bearing methyl(3-pyridylmethyl)amino groups, which was subsequently subjected to solvatochromic and metallation studies. The changes observed during metallation seem to result from the coordination of the 3-pyridyl group by a palladium ion. This could influence the configuration of the methyl(3-pyridylmethyl)amino moiety, causing more effective donation of a lone pair of electrons from peripheral nitrogen to the macrocyclic ring.  相似文献   

19.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

20.
Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex (Zn2L3+) has been studied (L = alkoxide species of 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-ol). Potentiometric pH titration study disclosed a 1 : 1 phenyl phosphate complexation with Zn2L3+ in aqueous solution. The dissociation constant (= [Zn2L3+][PhOPO3(2-)]/[Zn2L3+-PhOPO3(2-)]) is an extremely small value of 2.5 x 10(-8) mol dm(-3) at 25 degrees C with I = 0.10 (NaNO3). The X-ray crystal analysis of the dizinc(II) complex with p-nitrophenyl phosphate showed that the phosphate dianion binds as a bridging ligand to the two zinc(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号