首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate for glycolysis. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target.Results: The binding site in human liver glycogen phosphorylase (HLGP) for a class of promising antidiabetic agents was identified crystallographically. The site is novel and functions allosterically by stabilizing the inactive conformation of HLGP. The initial view of the complex revealed key structural information and inspired the design of a new class of inhibitors which bind with nanomolar affinity and whose crystal structure is also described. Conclusions: We have identified the binding site of a new class of allosteric HLGP inhibitors. The crystal structure revealed the details of inhibitor binding, led to the design of a new class of compounds, and should accelerate efforts to develop therapeutically relevant molecules for the treatment of diabetes.  相似文献   

2.
Human liver glycogen phosphorylase (HLGP) catalyzes the breakdown of glycogen to maintain serum glucose levels and is a therapeutic target for diabetes. HLGP is regulated by multiple interacting allosteric sites, each of which is a potential drug binding site. We used surface plasmon resonance (SPR) to screen for compounds that bind to the purine allosteric inhibitor site. We determined the affinities of a series of compounds and solved the crystal structures of three representative ligands with K(D) values from 17-550 microM. The crystal structures reveal that the affinities are partly determined by ligand-specific water-mediated hydrogen bonds and side chain movements. These effects could not be predicted; both crystallographic and SPR studies were required to understand the important features of binding and together provide a basis for the design of new allosteric inhibitors targeting this site.  相似文献   

3.
Glycogen phosphorylase (GP(a)) is a specific target for the design of inhibitors and may prevent glycogenolysis under high glucose conditions in type II diabetes. The carboxamides first reported by Hoover D. J. et al. (J. Med. Chem. 1998, 41, 2934-2938) are one of the major classes of GP(a) inhibitors other than glucose derivatives. The recent, X-ray crystallographic analyses (Oikonomakos et al. Biochim. Biophys. Acta 2003, 1647, 325-332) have revealed a distinct mechanism of action for these inhibitors, which bind at a new allosteric site away from the inhibitory and catalytic sites. To elucidate the essential structural and physicochemical requirements responsible for binding to the GP(a) enzyme and to develop predictive models, CoMFA and docking studies have been carried out on a series of indole-2-carboxamide derivates. The CoMFA model developed using pharmacophoric alignments and hydrogen-bonding fields demonstrated high predictive ability against the training (r2 = 0.98, q2 = 0.68) and the test set (r2pred = 0.85). Further the superimposition of PLS coefficient contour maps from CoMFA with the GP(a) active site (PDB: 1lwo) has shown a high level of compatibility.  相似文献   

4.
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway and a potential therapeutic target in the management of type 2 diabetes. It catalyzes a reversible reaction: the release of the terminal glucosyl residue from glycogen as glucose 1-phosphate; or the transfer of glucose from glucose 1-phosphate to glycogen. A colorimetric method to follow in vitro the activity of GP with usefulness in structure-activity relationship studies and high-throughput screening capability is herein described. The obtained results allowed the choice of the optimal concentration of enzyme of 0.38 U/mL, 0.25 mM glucose 1-phosphate, 0.25 mg/mL glycogen, and temperature of 37 °C. Three known GP inhibitors, CP-91149, a synthetic inhibitor, caffeine, an alkaloid, and ellagic acid, a polyphenol, were used to validate the method, CP-91149 being the most active inhibitor. The effect of glucose on the IC50 value of CP-91149 was also investigated, which decreased when the concentration of glucose increased. The assay parameters for a high-throughput screening method for discovery of new potential GP inhibitors were optimized and standardized, which is desirable for the reproducibility and comparison of results in the literature. The optimized method can be applied to the study of a panel of synthetic and/or natural compounds, such as polyphenols.  相似文献   

5.
In over a century since its discovery, Alzheimer’s disease (AD) has continued to be a global health concern due to its incurable nature and overwhelming increase among older people. In this paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD) methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-MD analyses are carried out on these selected compounds, which have been experimentally proven to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than five druggable pockets on the BACE1 structural surface using docking. Besides the active site region, a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD) simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1. The allostery and binding mechanism of the selected potent inhibitors show that the smaller the molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for compound 1. We hereby suggest that further studies and additional identification/validation of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the opportunities in the design of allosteric BACE1 inhibitors.  相似文献   

6.
AMP binding sites are commonly used by nature for allosteric regulation of enzymes controlling the production and metabolism of carbohydrates and lipids. Since many of these enzymes represent potential drug targets for metabolic diseases, efforts were initiated to discover AMP mimics that bind to AMP-binding sites with high affinity and high enzyme specificity. Herein we report the structure-guided design of potent fructose 1,6-bisphosphatase (FBPase) inhibitors that interact with the AMP binding site on FBPase despite their structural dissimilarity to AMP. Molecular modeling, free-energy perturbation calculations, X-ray crystallography, and enzyme kinetic data guided our redesign of AMP, which began by replacing the 5'-phosphate with a phosphonic acid attached to C8 of the adenine base via a 3-atom spacer. Additional binding affinity was gained by replacing the ribose with an alkyl group that formed van der Waals interactions with a hydrophobic region within the AMP binding site and by replacing the purine nitrogens N1 and N3 with carbons to minimize desolvation energy expenditures. The resulting benzimidazole phosphonic acid, 16, inhibited human FBPase (IC50 = 90 nM) 11-fold more potently than AMP and exhibited high specificity for the AMP binding site on FBPase. 16 also inhibited FBPase in primary rat hepatocytes and correspondingly resulted in concentration-dependent inhibition of the gluconeogenesis pathway. Accordingly, these results suggest that the AMP site of FBPase may represent a potential drug target for reducing the excessive glucose produced by the gluconeogenesis pathway in patients with type 2 diabetes.  相似文献   

7.
The compound 2-deoxy-2-fluoro-α-d-glucopyranosyl fluoride (F2Glc), which is a nonmetabolized superior glucose analogue, is a potent inhibitor of glycogen phosphorylase and pharmacological properties are reported. Glycogen phosphorylase (GP) and glycogen synthase (GS) are responsible of the degradation and synthesis, respectively, of glycogen which is a polymer of glucose units that provides a readily available source of energy in mammals. GP and GS are two key enzymes that modulate cellular glucose and glycogen levels; therefore, these proteins are suggested as potential targets for the treatment of diseases related to glycogen metabolism disorders. We studied by Western Blot technique that F2Glc decreased GP activity, and we also showed that F2Glc did not affect GS activity and its translocation from a uniform cytosolic distribution to the hepatocyte periphery, which is crucial for glycogen synthesis, using immunoblotting and immunofluorescence labeling techniques. F2Glc specifically inhibits glycogenolysis pathway and permits a greater deposition of glycogen. These observations open up the possibility of further develop drugs that act specifically on GP. The ability to selectively inhibit GP, which is a key enzyme for the release of glucose from the hepatic glycogen reserve, may represent a new approach for the treatment of hyperglycemia in type 2 diabetes.  相似文献   

8.
The viral resistance of marketed antiviral drugs including the emergence of new viral resistance of the only marketed CCR5 entry inhibitor, maraviroc, makes it necessary to develop new CCR5 allosteric inhibitors. A mutagenesis/modeling approach was used (a) to remove the potential hERG liability in an otherwise very promising series of compounds and (b) to design a new class of compounds with an unique mutant fingerprint profile depending on residues in the N-terminus and the extracellular loop 2. On the basis of residues, which were identified by mutagenesis as key interaction sites, binding modes of compounds were derived and utilized for compound design in a prospective manner. The compounds were then synthesized, and in vitro evaluation not only showed that they had good antiviral potency but also fulfilled the requirement of low hERG inhibition, a criterion necessary because a potential approved drug would be administered chronically. This work utilized an interdisciplinary approach including medicinal chemistry, molecular biology, and computational chemistry merging the structural requirements for potency with the requirements of an acceptable in vitro profile for allosteric CCR5 inhibitors. The obtained mutant fingerprint profiles of CCR5 inhibitors were used to translate the CCR5 allosteric binding site into a general pharmacophore, which can be used for discovering new inhibitors.  相似文献   

9.
10.

Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.

  相似文献   

11.
The significant role played by docking algorithms in drug discovery combined with their serious pitfalls prompted us to envisage a novel concept for validating docking solutions, namely, docking-based comparative intermolecular contacts analysis (dbCICA). This novel approach is based on the number and quality of contacts between docked ligands and amino acid residues within the binding pocket. It assesses a particular docking configuration on the basis of its ability to align a set of ligands within a corresponding binding pocket in such a way that potent ligands come into contact with binding site spots distinct from those approached by low-affinity ligands and vice versa. In other words, dbCICA evaluates the consistency of docking by assessing the correlation between ligands' affinities and their contacts with binding site spots. Optimal dbCICA models can be translated into valid pharmacophore models that can be used as 3-D search queries to mine structural databases for new bioactive compounds. dbCICA was implemented to search for new inhibitors of candida N-myristoyl transferase as potential antifungal agents and glycogen phosphorylase (GP) inhibitors as potential antidiabetic agents. The process culminated in five selective micromolar antifungal leads and nine GP inhibitory leads.  相似文献   

12.
Dysregulation of glycogen phosphorylase, an enzyme involved in glucose homeostasis, may lead to a number of pathological states such as type 2 diabetes and cancer, making it an important molecular target for the development of new forms of pharmaceutical intervention. Based on our previous work on the design and synthesis of 4-arylamino-1-(β-d-glucopyranosyl)pyrimidin-2-ones, which inhibit the activity of glycogen phosphorylase by binding at its catalytic site, we report herein a general synthesis of 2-substituted-5-(β-d-glucopyranosyl)pyrimidin-4-ones, a related class of metabolically stable, C-glucosyl-based, analogues. The synthetic development consists of a metallated heterocycle, produced from 5-bromo-2-methylthiouracil, in addition to protected d-gluconolactone, followed by organosilane reduction. The methylthio handle allowed derivatization through hydrolysis, ammonolysis and arylamine substitution, and the new compounds were found to be potent (μM) inhibitors of rabbit muscle glycogen phosphorylase. The results were interpreted with the help of density functional theory calculations and conformational analysis and were compared with previous findings.  相似文献   

13.
Receptor-dependent (RD) 4D-QSAR models were constructed for a set of 39 4-hydroxy-5,6-dihydropyrone analogue HIV-1 protease inhibitors. The receptor model used in this QSAR analysis was derived from the HIV-1 protease (PDB ID ) crystal structure. The bound ligand in the active site of the enzyme, also a 4-hydroxy-5,6-dihydropyrone analogue, was used as the reference ligand for docking the data set compounds. The optimized RD 4D-QSAR models are not only statistically significant (r(2) = 0.86, q(2) = 0.80 for four- and greater-term models) but also possess reasonable predictivity based on test set predictions. The proposed "active" conformations of the docked analogues in the active site of the enzyme are consistent in overall molecular shape with those suggested from crystallographic studies. Moreover, the RD 4D-QSAR models also "capture" the existence of specific induced-fit interactions between the enzyme active site and each specific inhibitor. Hydrophobic interactions, steric shape requirements, and hydrogen bonding of the 4-hydroxy-5,6-dihydropyrone analogues with the HIV-1 protease binding site model dominate the RD 4D-QSAR models in a manner again consistent with experimental conclusions. Some possible hypotheses for the development of new lead HIV-1 protease inhibitors can be inferred from the RD 4D-QSAR models.  相似文献   

14.
Glycogen phosphorylase (GP) is an important enzyme that regulates blood glucose level and a key therapeutic target for the treatment of type II diabetes. In this study, a number of potential GP inhibitors are designed with a variety of computational approaches. They include the applications of MCSS, LUDI and CoMFA to identify additional fragments that can be attached to existing lead molecules; the use of 2D and 3D similarity-based QSAR models (HQSAR and SMGNN) and of the LUDI program to identify novel molecules that may bind to the glucose binding site. The designed ligands are evaluated by a multiple screening method, which is a combination of commercial and in-house ligand-receptor binding affinity prediction programs used in a previous study (So and Karplus, J. Comp.-Aid. Mol. Des., 13 (1999), 243–258). Each method is used at an appropriate point in the screening, as determined by both the accuracy of the calculations and the computational cost. A comparison of the strengths and weaknesses of the ligand design approaches is made.  相似文献   

15.
To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein–ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new “Rank Difference Ratio” metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4’s very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational structure-based drug discovery tools and strategies that are being developed to advance the goals of the newly created, multi-institution, NIH-funded center called the “HIV Interaction and Viral Evolution Center”.  相似文献   

16.
Despite the similarity in the active site pockets of carbonic anhydrase (CA) isozymes I and II, the binding affinities of benzenesulfonamide inhibitors are invariably higher with CA II as compared to CA I. To explore the structural basis of this molecular recognition phenomenon, we have designed and synthesized simple benzenesulfonamide inhibitors substituted at the para position with positively charged, negatively charged, and neutral functional groups, and we have determined the affinities and X-ray crystal structures of their enzyme complexes. The para-substituents are designed to bind in the midsection of the 15 A deep active site cleft, where interactions with enzyme residues and solvent molecules are possible. We find that a para-substituted positively charged amino group is more poorly tolerated in the active site of CA I compared with CA II. In contrast, a para-substituted negatively charged carboxylate substituent is tolerated equally well in the active sites of both CA isozymes. Notably, enzyme-inhibitor affinity increases upon neutralization of inhibitor charged groups by amidation or esterification. These results inform the design of short molecular linkers connecting the benzenesulfonamide group and a para-substituted tail group in "two-prong" CA inhibitors: an optimal linker segment will be electronically neutral, yet capable of engaging in at least some hydrogen bond interactions with protein residues and/or solvent. Microcalorimetric data reveal that inhibitor binding to CA I is enthalpically less favorable and entropically more favorable than inhibitor binding to CA II. This contrasting behavior may arise in part from differences in active site desolvation and the conformational entropy of inhibitor binding to each isozyme active site.  相似文献   

17.
Synthetic chemical probes designed to simultaneously targeting multiple sites of protein surfaces are of interest owing to their potential application as site specific modulators of protein-protein interactions. A new approach toward bivalent inhibitors of mammalian type I geranylgeranyltransferase (GGTase I) based on module assembly for simultaneous recognition of both interior and exterior protein surfaces is reported. The inhibitors synthesized in this study consist of two modules linked by an alkyl spacer; one is the tetrapeptide CVIL module for binding to the interior protein surface (active pocket) and the other is a 3,4,5-alkoxy substituted benzoyl motif that contains three aminoalkyl groups designed to bind to the negatively charged protein exterior surface near the active site. The compounds were screened by two distinct enzyme inhibition assays based on fluorescence spectroscopy and incorporation of a [(3)H]-labeled prenyl group onto a protein substrate. The bivalent inhibitors block GGTase I enzymatic activity with K(i) values in the submicromolar range and are approximately one order of magnitude and more than 150 times more effective than the tetrapeptide CVIL and the methyl benzoate derivatives, respectively. The bivalent compounds 6 and 8 were shown to be competitive inhibitors, suggesting that the CVIL module anchors the whole molecule to the GGTase I active site and delivers the other module to the targeting protein surface. Thus, our module-assembly approach resulted in simultaneous multiple-site recognition, and as a consequence, synergetic inhibition of GGTase I activity, thereby providing a new approach in designing protein-surface-directed inhibitors for targeting protein-protein interactions.  相似文献   

18.
Genomics-driven growth in the number of enzymes of unknown function has created a need for better strategies to characterize them. Since enzyme inhibitors have traditionally served this purpose, we present here an efficient systems-based inhibitor design strategy, enabled by bioinformatic and NMR structural developments. First, we parse the oxidoreductase gene family into structural subfamilies termed pharmacofamilies, which share pharmacophore features in their cofactor binding sites. Then we identify a ligand for this site and use NMR-based binding site mapping (NMR SOLVE) to determine where to extend a combinatorial library, such that diversity elements are directed into the adjacent substrate site. The cofactor mimic is reused in the library in a manner that parallels the reuse of cofactor domains in the oxidoreductase gene family. A library designed in this manner yielded specific inhibitors for multiple oxidoreductases.  相似文献   

19.
Glucokinase (GK) plays a key role in the regulation of hepatic glucose metabolism. Inactivation of GK is associated with diabetes, and an increase of its activity is linked to hypoglycemia. Possibility to regulate the GK activity using small chemical compounds as allosteric activators induces the scientific interest to the study of the activation mechanism and to the development of new allosteric glucokinase activators.Interaction of glucokinase with ligands is the first step of the complicated mechanism of regulation of the GK functioning. In this paper, we study the interaction of GK with native (glucose) and synthetic (allosteric activators) ligands using molecular docking method. Calculations demonstrate the ability of molecular docking programs to accurately reproduce crystallized ligand poses and conformations and to calculate a free energy of binding with satisfactory accuracy. Correlation between the free energy of binding and the bioactivity of activators is discussed. These results provide a new insight into protein–ligand interactions and can be used for the engineering of new activators.  相似文献   

20.
The group IVA cytosolic phospholipase A(2) (GIVA cPLA(2)) plays a central role in inflammation. Long chain 2-oxoamides constitute a class of potent GIVA cPLA(2) inhibitors that exhibit potent in vivo anti-inflammatory and analgesic activity. We have now gained insight into the binding of 2-oxoamide inhibitors in the GIVA cPLA(2) active site through a combination of molecular docking calculations and molecular dynamics simulations. Recently, the location of the 2-oxoamide inhibitor AX007 within the active site of the GIVA cPLA(2) was determined using a combination of deuterium exchange mass spectrometry followed by molecular dynamics simulations. After the optimization of the AX007-GIVA cPLA(2) complex using the docking algorithm Surflex-Dock, a series of additional 2-oxoamide inhibitors have been docked in the enzyme active site. The calculated binding affinity presents a good statistical correlation with the experimental inhibitory activity (r(2) = 0.76, N = 11). A molecular dynamics simulation of the docking complex of the most active compound has revealed persistent interactions of the inhibitor with the enzyme active site and proves the stability of the docking complex and the validity of the binding suggested by the docking calculations. The combination of molecular docking calculations and molecular dynamics simulations is useful in defining the binding of small-molecule inhibitors and provides a valuable tool for the design of new compounds with improved inhibitory activity against GIVA cPLA(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号