首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL) 33 plays very important roles in inflammatory and allergic diseases. To select human single-chain Fv fragments (scFvs) against IL-33, a nonimmune phage library system was constructed. The full-length cDNA library was synthesized for amplification of the variable heavy chain (VH) and variable light chain (VL). By overlapping extension PCR for splicing VH and VL, the full-length scFv library DNA were amplified and then transformed into Escherichia coli TG1. The scFv library was constructed successfully which contained 2.5?×?108 independent clones with full-length scFv inserts. The results of fingerprint maps of the scFvs by BstN I and DNA sequencing from the library at random proved that the library was diverse. The human IL-33 was amplified, expressed, and purified. The purified IL-33 with bioactivity was biotinylated and used as antigen for selection of scFv library by phage display. After three rounds of affinity selection, about 30?% of clones have specific binding activity with IL-33. Five of those with good binding activity were transformed into E. coli strain HB2151 for soluble expression. The selected scFvs were further identified by western blot and sequencing. Those selected scFvs could be used for further research of their effect on inflammatory and allergic diseases such as asthma by blockade of IL-33.  相似文献   

2.
Functional antibody fragments may be displayed on the surface of filamentous bacteriophage by introducing variable region genes into the viral genome at a gene encoding a viral coat protein. “Phage display” enables the isolation of antibody genes from large libraries according to the binding specificities they encode. We have constructed a new phage-display vector encoding a polyhistidine tag that has been used for rapid purification of soluble antibody fragments. An antibody library derived from immunized mice was cloned into this vector. This library was panned against the transition state analog RT3, and a high proportion of binders isolated after two rounds of panning. PCR analysis revealed that there were 24 different pattern groups. Sequencing of 15 clones within the major pattern group revealed 10 related clones with a range of point mutations. Thus, phage display can provide a large diverse repertoire of candidate catalytic antibodies based on TSA selection and screening.  相似文献   

3.
Bacteriophage (phage) display has been exploited for the purpose of discovering new cancer specific targeting peptides. However, this approach has resulted in only a small number of tumor targeting peptides useful as in vivo imaging agents. We hypothesize that in vivo screening for tumor uptake of fluorescently tagged phage particles displaying multiple copies of an in vivo selected tumor targeting peptide will expedite the development of peptide based imaging agents. In this study, both in vivo selection and in vivo screening of phage displaying foreign peptides were utilized to best predict peptides with the pharmacokinetic properties necessary for translation into efficacious in vivo imaging agents. An in vivo selection of phage display libraries was performed in SCID mice bearing human PC-3 prostate carcinoma tumors. Eight randomly selected phage clones and four control phage clones were fluorescently labeled with AlexaFluor 680 for subsequent in vivo screening and analyses. The corresponding peptides of six of these phage clones were tested as 111In-labeled peptide conjugates for single photon emission computed tomography (SPECT) imaging of PC-3 prostate carcinomas. Two peptide sequences, G1 and H5, were successful as in vivo imaging agents. The affinities of G1 and H5 peptides for cultured PC-3 cells were then analyzed via cell flow cytometry resulting in Kd values of 1.8 μM and 2.2 μM, respectively. The peptides bound preferentially to prostate tumor cell lines compared to that of other carcinoma and normal cell lines, and H5 appeared to possess cytotoxic properties. This study demonstrates the value of in vivo screening of fluorescently labeled phage for the prediction of the efficacy of the corresponding 111In-labeled synthetic peptide as an in vivo SPECT tumor imaging agent.  相似文献   

4.
The amplification of phage-displayed libraries is an essential step in the selection of ligands from these libraries. The amplification of libraries, however, decreases their diversity and limits the number of binding clones that a screen can identify. While this decrease might not be a problem for screens against targets with a single binding site (e.g., proteins), it can severely hinder the identification of useful ligands for targets with multiple binding sites (e.g., cells). This review aims to characterize the loss in the diversity of libraries during amplification. Analysis of the peptide sequences obtained in several hundred screens of peptide libraries shows explicitly that there is a significant decrease in library diversity that occurs during the amplification of phage in bacteria. This loss during amplification is not unique to specific libraries: it is observed in many of the phage display systems we have surveyed. The loss in library diversity originates from competition among phage clones in a common pool of bacteria. Based on growth data from the literature and models of phage growth, we show that this competition originates from growth rate differences of only a few percent for different phage clones. We summarize the findings using a simple two-dimensional "phage phase diagram", which describes how the collapse of libraries, due to panning and amplification, leads to the identification of only a subset of the available ligands. This review also highlights techniques that allow elimination of amplification-induced losses of diversity, and how these techniques can be used to improve phage-display selection and enable the identification of novel ligands.  相似文献   

5.
With the human genome project approaching completion, there is a growing interest in functional analysis of gene products. The characterization of large numbers of proteins, their expression patterns and in vivo localisations, demands the use of automated technology that maintains a logistic link to the encoding genes. As a complementary approach, phage display is used for recombinant protein expression and the selection of interacting (binding) molecules. Cloning of libraries in filamentous bacteriophage or phage mid vectors provides a physical link between the expressed protein and its encoding DNA sequence. High-throughput technology for automated library handling and phage display selection has been developed using picking-spotting robots and a module for pin-based magnetic particle handling. This system enables simultaneous interaction screening of libraries and the selection of binders to different target molecules at high throughput. Target molecules are either displayed on high-density filter membranes (protein filters) or tag-bound to magnetic particles and can be handled as native ligands. Binding activity is confirmed by magnetic particle ELISA in the microtitre format. The whole procedure from immobilisation of target molecules to confirmed clones of binders is automatable. Using this technology, we have selected human scFv antibody fragments against expression products of human cDNA libraries.  相似文献   

6.
A panel of 22 na?ve peptide libraries was constructed in a polyvalent phage display format and sorted against insulin-like growth factor-1 (IGF-1). The libraries were pooled to achieve a total diversity of 4.4 x 10(11). After three rounds of selection, the majority of the phage clones bound specifically to IGF-1, with a disulfide-constrained CX(9)C scaffold dominating the selection. Four monovalently displayed sub-libraries were designed on the basis of these conserved motifs. Sub-library maturation in a monovalent format yielded an antagonistic peptide that inhibited the interactions between IGF-1 and two cell-surface receptors and those between IGF-1 and two soluble IGF binding proteins with micromolar potency. NMR analysis revealed that the peptide is highly structured in the absence of IGF-1, and peptides that preorganize the binding elements were selected during the sorting.  相似文献   

7.
Substrate identification is the key to defining molecular pathways or cellular processes regulated by proteases. Although phage display with random peptide libraries has been used to analyze substrate specificity of proteases, it is difficult to deduce endogenous substrates from mapped peptide motifs. Phage display with conventional cDNA libraries identifies high percentage of non-open reading frame (non-ORF) clones, which encode short unnatural peptides, owing to uncontrollable reading frames of cellular proteins. We recently developed ORF phage display to identify endogenous proteins with specific binding or functional activity with minimal reading frame problem. Here we used calpain 2 as a protease to demonstrate that ORF phage display is capable of identifying endogenous substrates and showed its advantage to re-verify and characterize the identified substrates without requiring pure substrate proteins. An ORF phage display cDNA library with C-terminal biotin was bound to immobilized streptavidin and released by cleavage with calpain 2. After three rounds of phage selection, eleven substrates were identified, including calpastatin of endogenous calpain inhibitor. These results suggest that ORF phage display is a valuable technology to identify endogenous substrates for proteases.  相似文献   

8.
9.
Phage surface display of cDNA libraries facilitates cloning, expression and rapid selection of functional gene products physically linked to their genetic information through gene product-ligand interactions. Efficient screening technologies based on selective enrichment of clones expressing desired gene products allows, within a short time, the isolation of all ligand-specific clones that are present in a library. Manual identification of clones by restriction analysis and random sequencing is unlike to be successful for the isolation of gene products derived from rare mRNA species resulting from selection of the libraries using polyvalent ligands like serum from patients. Here we describe rapid handling of large numbers of individual clones selected from molecular libraries displayed on phage surface using the power of robotics-based high throughput screening. The potential of the combination of cDNA-phage surface display, with selection for specific interactions by functional screening and robotic technology is illustrated by the isolation of more sequences potentially encoding IgE-binding proteins than postulated from Western blot analyses using extracts derived from raw material of complex allergenic sources. The subsequent application of functional enrichment and robotics-based screening will facilitate the rapid generation of information about the repertoire of protein structures involved in allergic diseases.  相似文献   

10.
构建大菜粉蝶Lipocalin蛋白家族中的BBP蛋白突变文库, 依据基因序列, 分别设计10条和12条引物, 通过PCR重叠延伸法得到包含随机突变蛋白BBP的基因序列, 并重组到噬菌粒载体pCANTAB5E中构建Lipocalin突变文库, 库容达到4.0×109. 以偶联分子BSA-克百威和OVA-克百威为靶分子, 采用柱式和平皿式交叉法对Lipocalin文库进行了筛选, 用竞争洗脱法洗脱特异结合活性的噬菌体. 经过3轮筛选, 从第3轮的洗脱液中随机挑选了10个重组克隆, 用Dot-blotting法检测出K7 anticalin分子能与克百威特异结合. 为研发克百威的Anticalin类检测试剂盒提供了候选分子, 也为拓宽Lipocalin文库在有害小分子检测方面的应用奠定了基础.  相似文献   

11.
Monolithic polyacrylamide cryogel was prepared and utilized as a new matrix for drug immobilization to screen against phage‐displayed human liver cDNA library. The macropores and hydrophilic nature of the cryogel made it possible for phage particles to pass unhindered. Doxorubicin, an anticancer drug, was covalently bonded to the monolithic cryogel by the glutaraldehyde method, and after five rounds of affinity selection performed in an SPE cartridge, phage clones that displayed Homo sapiens methyl CpG binding protein 2 (MeCP2) were selectively enriched. The interaction between doxorubicin and MeCP2 displayed phages was further validated by studying the retention of doxorubicin on MeCP2 phage‐coupled cryogel. These results demonstrate that drug‐coupled polyacrylamide cryogel might be a promising kind of matrix for screening target proteins against phage‐displayed library. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A new strategy for monovalently displaying small molecules on phage surfaces was developed and applied to high throughput screening for molecules with high binding affinity to the target protein. Peptidyl carrier protein (PCP) excised from nonribosomal peptide synthetase was monovalently displayed on the surface of M13 phage as pIII fusion proteins. Small molecules of diverse structures were conjugated to coenzyme A (CoA) and then covalently attached to the phage displayed PCP by Sfp phosphopantetheinyl transferase. Because Sfp is broadly promiscuous for the transfer of small molecule linked phosphopantetheinyl moieties to apo PCP domains, this approach will enable displaying libraries of small molecules on phage surfaces. Unique 20-base-pair (bp) DNA sequences were also incorporated into the phagemid DNA so that each compound displayed on the phage surface was encoded by a DNA bar code encapsulated inside the phage coat protein. Single round selection of phage displayed small molecules achieved more than 2000-fold enrichment of small molecules with nM binding affinity to the target protein. The selection process is further accelerated by the use of DNA decoding arrays for identifying the selected small molecules.  相似文献   

13.
The peptide substrate specificity of Tie-2 was probed using the phage display method in order to identify efficient substrate for high throughput screening. Two random peptide libraries, pGWX3YX4 and pGWX4YX4, were constructed, in which all twenty amino acid residues were represented at the X positions flanking the fixed tyrosine residue Y. A fusion protein of GST and the catalytic domain of human Tie-2 was used to perform the phage phosphorylation. The phosphorylated phage particles were enriched by panning over immobilized anti-phosphotyrosine antibody pY20 for a total of 5 rounds. Four phage clones (3T61, 3T68, C1-90 and D1-15) that express a peptide sequence that can be phosphorylated by the recombinant catalytic domain of human Tie-2 were identified. Synthetic peptides made according to the sequences of the 4 selected clones from the two libraries, which had widely different sequences, were active substrates of Tie-2. Kinetic analysis revealed that D1-15 had the best catalytic efficiency with a k(cat)/K(m) of 5.9x10(4) M(-1) s(-1). Three high throughput screening assay formats, dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), radioactive plate binding (RPB) and time-resolved fluorescent resonance energy transfer (TR-FRET) were developed to assess the suitability of these phage display selected peptides in screening Tie-2 inhibitors. Three out of four peptides were functional in the DELFIA assay and D1-15 was functional in the TR-FRET assay.  相似文献   

14.
We had developed a technology for creation of recombinant polyclonal antibody libraries, standardized perpetual mixtures of polyclonal whole antibodies for which the genes are available and can be altered as desired. We report here the first phase of generating a polyclonal antibody library to Cryptosporidium parvum, a protozoan parasite that causes severe disease in AIDS patients, for which there is no effective treatment. BALB/c mice, immunized by neonatal oral infection with oocysts followed by intraperitoneal immunization with a sporozoite/oocyst preparation of C. parvum, were used for construction of a Fab phage display library in a specially-designed bidirectional vector. This library was selected for reactivity to an oocyst/sporozoite preparation, and was shown to be antigen-specific and diverse. Following mass transfer of the selected variable region gene pairs to appropriate mammalian expression vectors, such anti-C. parvum Fab phage display libraries could be used to develop chimeric polyclonal antibody libraries, with mouse variable regions and human constant regions, for passive immunotherapy of C. parvum infection.  相似文献   

15.
具有谷胱甘肽过氧化物酶活性的含硒人源单链抗体的制备   总被引:2,自引:2,他引:0  
以谷胱甘肽(GSH)为靶抗原, 从噬菌体展示人源单链抗体库中筛选人源单链抗体(scFv). 经3轮筛选后, 用ELISA方法检测出5个(2, 11, 16, 24, 32 )可以和GSH结合的克隆. PCR产物的电泳和测序结果表明, 只有3个克隆(11, 16, 24)具有完整的scFv编码基因. 选取和GSH结合力高的克隆11的scFv 编码基因组装到表达载体pPELB上, 在大肠杆菌Rosetta中进行可溶性表达, 用Ni2+螯合亲和层析纯化scFv-11, 免疫点印迹结果证实该抗体能与GSH特异结合. 通过化学突变将scFv-11的丝氨酸转变成硒代半胱氨酸(Sec)后, 获得了具有谷胱甘肽过氧化物酶(GPX)活力的含硒(Se)人源单链抗体(Se-scFv-11), 其活力为351 U/μmol.  相似文献   

16.
When using multiple targets and libraries, selection of affinity reagents from phage-displayed libraries is a relatively time-consuming process. Herein, we describe an automation-amenable approach to accelerate the process by using alkaline phosphatase (AP) fusion proteins in place of the phage ELISA screening and subsequent confirmation steps with purified protein. After two or three rounds of affinity selection, the open reading frames that encode the affinity selected molecules (i.e., antibody fragments, engineered scaffold proteins, combinatorial peptides) are amplified from the phage or phagemid DNA molecules by PCR and cloned en masse by a Ligation Independent Cloning (LIC) method into a plasmid encoding a highly active variant of E. coli AP. This time-saving process identifies affinity reagents that work out of context of the phage and that can be used in various downstream enzyme linked binding assays. The utility of this approach was demonstrated by analyzing single-chain antibodies (scFvs), engineered fibronectin type III domains (FN3), and combinatorial peptides that were selected for binding to the Epsin N-terminal Homology (ENTH) domain of epsin 1, the c-Src SH3 domain, and the appendage domain of the gamma subunit of the clathrin adaptor complex, AP-1, respectively.  相似文献   

17.
Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.  相似文献   

18.
WD40 is a ubiquitous domain presented in at least 361 human proteins and acts as scaffold to form protein complexes. Among them, WDR5 protein is an important mediator in several protein complexes to exert its functions in histone modification and chromatin remodeling. Therefore, it was considered as a promising epigenetic target involving in anti-cancer drug development. In view of the protein–protein interaction nature of WDR5, we initialized a campaign to discover new peptide-mimic inhibitors of WDR5. In current study, we utilized the phage display technique and screened with a disulfide-based cyclic peptide phage library. Five rounds of biopanning were performed and isolated clones were sequenced. By analyzing the sequences, total five peptides were synthesized for binding assay. The four peptides are shown to have the moderate binding affinity. Finally, the detailed binding interactions were revealed by solving a WDR5-peptide cocrystal structure.  相似文献   

19.
Combinatorial phage peptide libraries have been used to identify the ligands for specific target molecules. These libraries are also useful for identification of the specific substrates of various proteases. A substrate phage library has a random peptide sequence at the N-terminus of the phage coat protein and an additional tag sequence that enables attachment of the phage to an immobile phase. When these libraries are incubated with a specific enzyme, such as a protease, the uncleaved phage is excluded from the solution with tag-binding macromolecules. This provides a novel approach to define substrate specificity. The aim of this review is to summarize recent progress on the application of the substrate phage technique to identify specific substrates of proteolytic enzymes. As an example, some of our own experimental data on the selection and characterization of substrate sequences for thrombin, a serine protease, and membrane type-1 matrix metalloproteinase (MT1-MMP) will be presented. Using this approach, the canonical consensus substrate sequence for thrombin was deduced from the selected clones. As expected from the collagenolytic activity of MT1-MMP, a collagen-like sequence was identified in the case of MT1-MMP. A more selective substrate sequence for MT1-MMP was identified during a substrate phage screen. The delineation of the substrate specificity of proteases will help to elucidate the enzymatic properties and the physiological roles of these enzymes. Comprehensive screening of very large numbers of potential substrate sequences is possible with substrate phage libraries. Thus, this approach allows novel substrate sequences and previously unknown target molecules to be defined.  相似文献   

20.
BACKGROUND: Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor kappa B (NF-kappa B) p50 to establish a phenotype-genotype link between the displayed protein and the encoding gene. RESULTS: A range of model fusion proteins to either the amino- or carboxy-terminus of NF-kappa B p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-kappa B p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50-DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein-plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:10(8) and to enrich to near homogeneity a single functional protein from a phenotype-genotype linked Escherichia coli genomic library using in vitro functional selections. CONCLUSIONS: A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号