首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

2.
The occurrence of surface ferromagnetism in inorganic nanoparticles as a universal property not only explains many of the unusual magnetic features of oxidic thin films, but also suggests its possible use in creating new materials, as exemplified by multiferroic BaTiO3 nanoparticles. While the use of Mn-doped ZnO and such materials in spintronics appears doubtful, it is possible to have materials exhibiting the coexistence of (bulk) superconductivity and (surface) ferromagnetism.  相似文献   

3.
Copper-doped ZnO (ZnO:Cu) films exhibiting room-temperature (RT) ferromagnetism were prepared by filtered cathodic vacuum arc (FCVA) technique. The ZnO:Cu films deposited at RT showed the strongest magnetic moment of 0.40 μB/Cu as compared with the samples prepared at elevated temperatures. The observed strong ferromagnetism in the RT-deposited ZnO:Cu films could be partly associated with Zn-interstitial defects. The degradation of magnetic moment in the ZnO:Cu prepared at high temperatures and annealed at elevated temperatures might be attributed to the out-diffusion of Zn interstitials to the ZnO lattice.  相似文献   

4.
The electrical and ferromagnetic properties of (In0.9−xTbxSn0.1)2O3 and (In0.99−yTb0.01Sny)2O3 films fabricated by sol-gel method have been investigated. All the films show room temperature ferromagnetism. The magnetic moment per Tb ion of (In0.9−xTbxSn0.1)2O3 films first increases and then decreases with the increasing Tb content. The variation of conductivity with Tb content is coincident with that of the magnetic moment. Furthermore, the conductivity and magnetic moment variations with Sn content y in (In0.99−yTb0.01Sny)2O3 films also have the similar trend. These results imply that the ferromagnetism may originate from the carrier-mediated mechanism.  相似文献   

5.
刘兴翀  陆智海  张凤鸣 《中国物理 B》2010,19(2):27502-027502
This paper reports that Zn0.97Mn0.03O thin films have been prepared by radio-frequency sputtering technology followed by rapid thermal processing in nitrogen and oxygen ambient respectively. Magnetic property investigation indicates that the films are ferromagnetic and that the Curie temperature (Tc) is over room temperature. It is observed that the saturation magnetization of the films increases after annealing in nitrogen ambience but decreases after annealing in oxygen. Room temperature photoluminescence spectra indicate that the amount of defects in the films differs after annealing in the different ambiences. This suggests that the ferromagnetism in Zn0.97Mn0.03O films is strongly related to the defects in the films.  相似文献   

6.
The ZnO nanorod array films have been epitaxially deposited on indium tin oxide (ITO) glass along 〈0001〉 direction. It is found that the film is grown in a two-step process including nanoparticle film nucleation and oriented rod growth. The as-prepared ZnO film shows a dominant diamagnetic signal and a weak ferromagnetic signal at room temperature. The room temperature ferromagnetism deteriorated by annealing in air or N2. The photoluminescent spectra revealed that the intensity of ZnO defect band decreases after annealing. Thus, the decreased ferromagnetism is likely to have resulted from the decrease of oxygen vacancies and defects in the as-prepared film. Moreover, ZnO deposited at various times showed that defects located at or near the interface between the substrate and the film play a major role in ferromagnetism. It suggests that ferromagnetism can be tuned by changing the defects in ZnO.  相似文献   

7.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

8.
In this work, Ni-doped ZnO (Zn1−xNixO, x=0, 0.03, 0.06, 0.11) films were prepared using magnetron sputtering. X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), temperature dependence electrical resistance, Hall and magnetic measurements were utilized in order to study the properties of the Ni-doped ZnO films. XRD and XAS results indicate that all the samples have a ZnO wurtzite structure and Ni atoms incorporated into ZnO host matrix without forming any secondary phase. The Hall and electrical resistance measurements revealed that the resistivity increased by Ni doping, and all the Ni-doped ZnO films exhibited n-type semiconducting behavior. The magnetic measurements showed that for the samples with x=0.06 and 0.11 are room-temperature ferromagnetic having a saturation magnetization of 0.33 and 0.39 μB/Ni, respectively. The bound-magnetic-polaron mediated exchange is proposed to be the possible mechanism for the room-temperature ferromagnetism in this work.  相似文献   

9.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

10.
We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO3) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn0.05Zn0.95O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.  相似文献   

11.
采用射频磁控溅射法在石英玻璃衬底上制备了ZnO:Mn薄膜, 结合N+ 注入获得Mn-N共掺ZnO薄膜, 进而研究了退火温度对其结构及室温铁磁性的影响. 结果表明, 退火后ZnO:(Mn, N) 薄膜中Mn2+和N3-均处于ZnO晶格位, 没有杂质相生成. 退火温度的升高 有助于修复N+注入引起的晶格损伤, 同时也会让N逸出薄膜, 导致受主(NO)浓度降低. 室温铁磁性存在于ZnO:(Mn, N)薄膜中, 其强弱受NO浓度的影响, 铁磁性起源可采用束缚磁极化子模型进行解释.  相似文献   

12.
The samarium doping zinc oxide (Zn1-xSmxO) with (x=0.0, 0.04, 0.05 and 0.17) polycrystalline thin films have been deposited on n-Si(1 0 0) substrate using thermal evaporation technique. Ceramic targets for deposition were prepared by the standard solid-state reaction method and sintered in nitrogen atmospheres. X-ray diffraction and scanning electron microscopy analyses show that the bulk and films features reveal wurtzite crystal structure with a preferential (1 0 1) crystallographic orientation and grows as hexagonal shape grains. According to the results of the Hall effect measurements, all the films show p-type conductivity, possibly a result of nitrogen incorporation into the Sm-doped ZnO samples. Magnetic measurements show that ferromagnetic behavior depends on the Sm3+ concentration. For a film with lower Sm2O3 contents (x=0.04), a phenomenon of paramagnetism has been observed. While, with further increase of Sm3+ contents (x=0.05) the ferromagnetic behavior has been observed at room temperature. However, at higher doping content of Sm3+, the ferromagnetic behavior was suppressed. The decrease of ferromagnetism with increasing doping concentration demonstrates that ferromagnetism observed at room temperature is an intrinsic property of Zn1-xSmxO films.  相似文献   

13.
Microstructure, magnetic and optical properties of polycrystalline Fe-doped ZnO films fabricated by cosputtering with different Fe atomic fractions (xFe) have been examined systematically. Fe addition could affect the growth of ZnO grains and surface morphology of the films. As xFe is larger than 7.0%, ZnFe2O4 grains appear in the films. All the films are ferromagnetic. The ferromagnetism comes from the ferromagnetic interaction activated by defects between the Fe ions that replace Zn ions. The average moment per Fe ion reaches a maximum value of 1.61 μB at xFe = 4.8%. With further increase in xFe, the average moment per Fe ion decreases because the antiferromagnetic energy is lower than the ferromagnetic one due to the reduced distance between the adjacent Fe ions. The optical band gap value decreases from 3.245 to 3.010 eV as xFe increases from 0% to 10%. Photoluminescence spectra analyses indicate that many defects that affect the optical and magnetic properties exist in the films.  相似文献   

14.
The Zn0.9Co0.1O films are fabricated by chemical solution deposition method. All the films have the ZnO wurtzite structure with a preferential orientation along the c-axis. The analysis of X-ray near-edge absorption spectroscopy and X-ray photoelectron spectroscopy indicates that the valence of Co is +2, and there are oxygen vacancies in Zn0.9Co0.1O films annealed in Ar atmosphere. Extended X-ray absorption fine structure results reveal that Co2+ ions have dissolved into ZnO and substituted for Zn2+ ions. Magnetization measurements show that the film annealed in Ar exhibits ferromagnetism which can be explained by the formation of bound magnetic polarons.  相似文献   

15.
Well-aligned ZnO nanorods and Mn-doped ZnO nanorods are fabricated on Si (1 0 0) substrate according to the contribution of Zn metal catalysts. Scanning electron microscopy and high-resolution transmission electron microscopy images indicate that the influence of Zn catalyst on the properties of ZnO can be excluded and the growth of ZnO nanorods follows a vapor-liquid-solid and self-catalyzed model. Mn-doped ZnO nanorods show a typical room temperature ferromagnetic characteristic with a saturation magnetization (MS) of 0.273μB/Mn. Cathodoluminescence suggests that the ferromagnetism of Mn-doped ZnO nanorods originates from the Mn2+-Mn2+ ferromagnetic coupling mediated by oxygen vacancies. This technique provides exciting prospect for the integration of next generation Si-technology-based ZnO spintronic devices.  相似文献   

16.
《Current Applied Physics》2015,15(10):1256-1261
P-type conductivity in MOCVD grown ZnO was obtained by directional thermal diffusion of arsenic from semi-insulating GaAs substrate. The films were single crystalline in nature and oriented along (002) direction. Ab initio calculations in the framework of density functional theory have been carried out with different chemical states of arsenic in ZnO. Present calculations suggested AsZn–2VZn defect is a shallow acceptor and results in ferromagnetism in ZnO. The magnetic measurements of the samples indeed showed ferromagnetic ordering at room temperature. X-ray photoelectron spectra confirmed the presence of AsZn and VZn. The core level chemical shift in binding energy of AsZn indicated the formation of AsZn–2VZn. Diffused arsenic substitutes zinc atom and creates additional zinc vacancies. The zinc vacancies, surrounding the oxygen atoms, result in unpaired O 2p electrons which in turn induce ferromagnetism in the samples.  相似文献   

17.
Wang  L. S.  Liu  S. J.  Guo  H. Z.  Chen  Y.  Yue  G. H.  Peng  D. L.  Hihara  T.  Sumiyama  K. 《Applied Physics A: Materials Science & Processing》2012,106(3):717-723
The ferromagnetic transparent conducting film is a multifunctional film which has high visible transmittance, low resistivity and room-temperature ferromagnetism, simultaneously. In this article, ferromagnetic transparent conducting ZnO:Al/Fe65Co35/ZnO:Al multilayer films were fabricated by inserting a middle magnetic Fe65Co35 layer into aluminum-doped zinc oxide (ZnO:Al) matrix using a magnetron sputtering apparatus at substrate temperature ranging from room temperature (RT) to 400C. The total film thickness was about 400 nm and the middle Fe65Co35 alloy layer was 4 nm. The influences of substrate temperature (T s ) on the structural, electrical, optical and magnetic properties of the multilayer films were systemically investigated. The results showed that the microstructure and performance of the composite multilayer films strongly depended on the substrate temperature. The present results also showed that the inserted middle Fe65Co35 alloy thin layer played an important role in providing the RT ferromagnetism and decreasing the resistivity of the multilayer films. Therefore, it is possible to obtain a multifunctional film material with the combination of good optical transparency, high electrical conductivity and RT ferromagnetism.  相似文献   

18.
李志文  岂云开  顾建军  孙会元 《物理学报》2012,61(13):137501-137501
采用直流磁控反应共溅法制备了非磁性元素Al和磁性元素Co掺杂的ZnO薄膜, 样品原位真空退火后再空气退火处理. 利用X射线衍射仪(XRD) 和物理性能测量仪(PPMS) 对薄膜的结构和磁性进行了表征. XRD和PPMS结果表明, 不同的退火氛围对掺杂薄膜的结构和磁性有着很大的影响. 真空退火的Al掺杂ZnO薄膜没有观察到铁磁性, 而空气退火的样品却显示出明显的室温铁磁性, 铁磁性的来源与空气退火后导致Al和ZnO基体间电荷转移增强有关. 而对于Co掺杂ZnO薄膜, 真空退火后再空气退火, 室温铁磁性明显减弱. 其磁性变化与Co离子和ZnO基体间电荷转移导致磁性增强和间隙Co原子被氧化导致磁性减弱有关.  相似文献   

19.
利用磁控溅射和快速热处理的方法制备了Mn,B共掺的多晶硅薄膜(Si0.9654Mn0.0346:B).磁性和结构研究发现薄膜有两个铁磁相.低温铁磁相来源于杂相Mn4Si7,高温铁磁相(居里温度TC~250K)是由Mn原子掺杂进入Si晶格导致.晶化后的薄膜利用射频等离子体增强化学气相沉积系统(PECVD)进行短暂(4min)的氢化处理后发现,薄膜的微结构没有发生变化而饱和磁化强度却随着 关键词: 磁性半导体 硅 氢化  相似文献   

20.
Phase pure Zn1?x Co x O thin films grown by pulsed laser deposition have transmittance greater than 75 % in the visible region. Raman studies confirm the crystalline nature of Zn1?x Co x O thin films. Zn0.95Co0.05O thin films show room temperature ferromagnetism with saturation magnetization of 0.4μ B /Co atom. The possible origin of paramagnetism at higher Co doping concentrations can be attributed to the increased nearest-neighbor antiferromagnetic interactions between Co2+ ions in ZnO matrix. XPS confirms the substitution of Co2+ ions into the ZnO host lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号