首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CoFe2O4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface.  相似文献   

2.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

3.
Cobalt ferrite nanoparticles (CoFe2O4) have been synthesized using precipitation in water solution with polyethylene glycol as surfactant. Influence of various synthesis variables included pH, reaction time and annealing temperature on the magnetic properties and particle sizes has also been studied. Structural identification of the samples was carried out using Thermogravimetric and Differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, High resolution transmission electron microscopy. Vibrating sample magnetometer was used for the magnetic investigation of the samples. Magnetic properties of nanoparticles show strong dependence on the particle size. The magnetic properties increase with pH of the precipitating medium and annealing temperature while the coercivity goes through a maximum, peaking at around 25 nm.  相似文献   

4.
Octahedral-like CoFe2O4 ferrite was fabricated using an ethylenediaminetetraacetic acid (EDTA)-assisted route under mild conditions. EDTA plays important roles in the formation of the products in the process. Also, the magnetic properties of the samples were characterized on a vibrating sample magnetometer (VSM).  相似文献   

5.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

6.
CoFe2−xGdxO4 (x=0-0.25) nanoparticles were synthesized via a simple hydrothermal process at 200 °C for 16 h without the assistance of surfactant. The as-synthesized powders were characterized by X-ray diffraction, transmission electron microscopy, and a vibrating sample magnetometer. The X-ray diffraction results showed that the as-synthesized powders were in the pure phase with a doping amount of ≤0.25, and the peaks could be readily indexed to the cubic spinel cobalt ferrite. Transmission electron microscopy and high resolution transmission electron microscopy observations revealed that the gadolinium-doped cobalt ferrite nanoparticles were single crystal, roughly spherical, uniformly distributed, and not highly agglomerated. The room temperature magnetic field versus magnetization measurements confirmed a strong influence of gadolinium doping on the saturation magnetization and coercivity due to large lattice distortion and grain growth of small particles.  相似文献   

7.
Epitaxial thin films of Fe3O4 and CoFe2O4 on MgO (0 0 1) substrates were grown by molecular beam epitaxy at low temperature growth process. Magnetization and hysteresis loop of both films were measured to investigate magnetic anisotropic properties at various temperatures. Anomalous magnetic properties are found to be correlated with crystalline, shape, and stress anisotropies. The Fe3O4 film below Verwey structural transition has a change in crystal structure, thus causing many anomalous magnetic properties. Crystalline anisotropy and anomalous magnetic properties are affected substantially by Co ions. The saturation magnetization of Co–ferrite film becomes much lower than that of Fe3O4 film, being very different from the bulks. It indicates that the low temperature growth process could not provide enough energy to have the lowest energy state.  相似文献   

8.
Cobalt ferrite (CoFe2O4) nano-particles have been synthesized successfully and we studied the effect of temperature on them. The particles have been annealed at different temperatures ranging from 373 to 1173 K. Significant effect on the physical parameters like crystalline phase, crystallite size, particle size, lattice strain and magnetic properties of the nano-particles has been investigated. The studies have been carried out using a powder X-ray diffractometer (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). A thorough study of the variation of specific surface area and particle size with annealing is presented here, with their effects on saturation magnetization.  相似文献   

9.
When a uniaxial magnetic field is applied to a non-magnetic dispersive medium filled with magnetic nanoparticles, they auto-assemble into thin needles parallel to the field direction, due to the strong dipolar interaction among them. We have prepared in this way magnetically oriented nanocomposites of nanometer-size CoFe2O4 particles in a polydimethylsiloxane polymer matrix, with 10% w/w of magnetic particles. We present the characteristic magnetic relaxation curves measured after the application of a magnetic field forming an angle α with respect to the needle direction. We show that the magnetic viscosity (calculated from the logarithmic relaxation curves) as a function of α presents a minimum at α=0, indicating slower relaxation processes associated with this configuration of fields. The results seems to point out that the local magnetic anisotropy of the nanoparticles is oriented along the needles, resulting in the macroscopic magnetic anisotropy observed in our measurements.  相似文献   

10.
Our studies comprise electrical dielectric and magnetoelectric properties of CoFe2O4 (CFO) and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 [PMN-PT] magnetoelectric composites. The individual phases were prepared by conventional ceramic method. The particulate composites of ferrite and ferroelectric phases were prepared in ferroelectric rich region. Presence of both the phases in the composites was confirmed using X-ray diffraction techniques. The scanning electron microscopic images recorded in backscattered mode were used to study the microstructure of composites. Lattice constant, dielectric constant, electrical resistivity, ferroelectric, and magnetic properties of individual as well as particulate composites were studied. Further the bi-layer composites were made using the discs obtained from the powders of individual phases where hot press technique was employed to obtain disc of individual phases. CFO phase used in bi-layer composites was obtained using chemical co-precipitation technique. Magnetoelectric (ME) measurements were carried out on both, particulate and layered magnetoelectric composites. Comparison of ME signal obtained from particulate and layered composites revealed that the layered composites gives superior magnetoelectric signal. ME data obtained for layered composites show good agreement with the theoretical model.  相似文献   

11.
Magnetic nanoparticles of CoFe2O4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe2O4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder.  相似文献   

12.
We report the optical and electronic properties of the inverse spinel ferrite NiFe2O4 and CoFe2O4 thin films deposited on single crystal sapphire by electron beam deposition. We carried out variable temperature (78–500 K) transmittance measurements on the thin films to investigate the optical properties and electronic structures of these ferrites. The absorption spectra of both NiFe2O4 and CoFe2O4 thin films show insulating characters with Ni (Co) d to d on-site transitions below 3 eV. The energy bands above 3 eV are mainly due to the O 2p to Fe 3d charge transfer transitions. The observed electronic transitions have been assigned based on the first principles calculations and comparisons with structurally similar Ni and Co-containing compounds. The Co2+ d to d transition in the CoFe2O4 thin film shows a strong temperature dependence, likely due to the spin-charge coupling effect.  相似文献   

13.
Nanocrystalline CoFe2−xScxO4 (x=0-0.4) thin films were prepared on silicon substrates at reduced temperature by a sol-gel process, and the doping effects of scandium on the microstructure, magnetism and polar magneto-optical Kerr effects of the as-deposited films were examined. It was shown that the intensities of both of the Kerr rotation peaks increase with the doping content x of Sc3+. The increase for the peak at 540 nm is due to the decrease of the electrostatic polarization of O2− resulting from the relatively large radius of Sc3+, and that for the peak at 620 nm was a result of the migration of Co2+ from octahedral to tetrahedral sites in the presence of the dopant of Sc3+.  相似文献   

14.
Collective magnetic behavior of CoFe2O4 nanoparticles with diameters of 76, 16, 15 and 8 nm, respectively, prepared by different chemical methods has been investigated. Particle composition, size and structure have been characterized by inductive coupled plasma (ICP), transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). Basic magnetic properties have been determined from the temperature dependence of magnetization and magnetization isotherms measurements. The three samples exhibit characteristic of a superparamagnetic system with the presence of strong interparticle interactions. Magnetic relaxation phenomena have been examined via frequency-dependent ac susceptibility measurements and aging and memory effect experiments. For the particles coated with oleic acid, it has been demonstrated that the sample reveals all attributes of a super-spin glass (SSG) system with strong interparticle interactions.  相似文献   

15.
The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Pade approximant are used to calculate the critical temperature of (CoxFe1-x)A(Znl-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained.  相似文献   

16.
We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (∼805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.  相似文献   

17.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. By optimizing the preparation conditions, monodisperse CoFe2O4/SiO2 NPs with high amino groups’ density were obtained, which is necessary for enzyme immobilization. TEM confirm that the sample is a core/shell structure. These aminated-CoFe2O4/SiO2 NPs have narrow size distributions with a mean size of about 60 nm. Moreover, the aminated-CoFe2O4/SiO2 NPs can be easily dispersed in aqueous medium. The experimental results also show that the NPs have superparamagnetism, indicating that the aminated-CoFe2O4/SiO2 NPs can be used as an effective carrier for the enzyme immobilization.  相似文献   

18.
 采用溶胶-凝胶工艺和高温高压实验技术,制备了纳米CoFe2O4/SiO2复合材料。利用X射线衍射仪、扫描电子显微镜和振动样品磁强计,对样品的结构、微观形貌和磁性进行了研究,并对CoFe2O4中阳离子的占位情况进行了讨论。结果表明,随着处理压力的升高,样品的晶粒尺寸增大,晶格常数减小,比饱和磁化强度增大。通过计算结果可以推断,压力的升高导致CoFe2O4中的部分Fe3+从A位移向了B位,而部分Co2+则从B位移向了A位。  相似文献   

19.
A kind of magnetic multiple functional groups nanocomposites, chitosan–ethylenediaminetetraacetate (EDTA)-enwrapped CoFe2O4 nanoparticles, i.e. CoFe2O4@chitosan–EDTA nanocomposites were synthesized by a facile zero-length emulsion crosslinking process. In this method, CoFe2O4 was used as magnetic core, and 1-ethyl-3-(3-dimethylminopropyl) carbodiimide hydrochloride (EDAC) was used as a crosslinker, integrating amino group of chitosan and carboxyl group of EDTA. Determination of amino groups in chitosan modified by EDAC-activated EDTA was carried out through the trinitrobenzenesulfonic acid (TNBS) method. The as-prepared magnetic nanocomposites were characterized by XRD, FT-IR, XPS, SEM, EDS, TEM, SAED and vibrating sample magnetometer (VSM), and the results showed that the as-prepared CoFe2O4@chitosan–EDTA nanocomposites have good dispersibility, spherical shape and enough magnetization. The method proposed can be extended to fabricate other magnetic nanocomposites possessed amino and carboxyl groups.  相似文献   

20.
CoFe2O4 ferrite nanoparticles were prepared by a modified chemical coprecipitation route. Structural and magnetic properties were systematically investigated. X-ray diffraction results showed that the sample was in single phase with the space group . The results of field-emission scanning electronic microscopy showed that the grains appeared spherical with diameters ranging from 20 to 30 nm. The composition determined by energy-dispersive spectroscopy was stoichiometry of CoFe2O4. The Curie temperature in the process of increasing temperature was slightly higher than that in the process of decreasing temperature. This can be understood by the fact that heating changed Co2+ ion redistribution in tetrahedral and in octahedral sites. The coercivity of the synthesized CoFe2O4 samples was lower than the theoretical values, which could be explained by the mono-domain structure and a transformation from ferrimagnetic to superparamagnetic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号