首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the particle size dependence of the relaxivity of hydrogen protons in an aqueous solution of iron oxide (Fe3O4) nanoparticles coated in silica for biocompatibility. The T1 and T2 relaxation times for various concentrations of silica-coated nanoparticles were determined by a magnetic resonance scanner. We find that the relaxivity increased linearly with increasing particle size. The T2 relaxivity (R2) is more than 50 times larger than the T1 relaxivity (R1) for the nanoparticle contrast agent, which reflects the fact that the T2 relaxation is mainly influenced by outer sphere processes. The high R2/R1 ratio demonstrates that silica-coated iron oxide nanoparticles may serve as a T2 contrast agents in magnetic resonance imaging with high efficacy.  相似文献   

2.
Monodispersed amphiphilic FePt nanoparticles with the diameter of about 4 nm were synthesized by high temperature pyrolysis of iron(III) acetylacetonate and platinum(II) acetylacetonate. Their amphiphilicity is contributed to the tetraethylene glycol (TEG) and oleic acid (OA) on the surface, which is confirmed by FTIR and XPS spectra. They provide a superparamagnetic property with the saturation magnetization (Ms) of about 25 emu/g and the transverse relaxivity (r2) of about 122.6 mM−1 s−1 in aqueous solutions. Furthermore, FePt nanoparticles show low cytotoxicity in living cells. They can be uptaken by HeLa cells effectively and result in the obvious decrease of T2 relaxation time after internalization.  相似文献   

3.
A simple approach to synthesize carboxymethyl dextran‐coated MnO nanoparticles (CMDex‐MnONPs) with high colloidal stability in physiological saline solutions is described here for potential applications as a magnetic resonance imaging (MRI) T1 contrast agent. The thermal decomposition methodology is used to produce uniform MnONPs with an average size of around 20 nm, and its hydrophobic surface is modified with CMDex molecules, conferring hydrophilic properties. After CMDex coating, the nanoparticle presents high colloidal stability in concentrations ranging from 10 to 50 μg mL?1, average hydrodynamic size (Z‐average) of 130 nm, polydispersity degree of ≈12%, and negative surface charge in both simulated body fluid solutions and pure water with zeta‐potential of –20 and –40 mV, respectively. The CMDex‐MnONPs with 20 nm show antiferromagnetic behavior at room temperature, and the magnetic properties are found to be strongly dependent of the nanoparticle size, increasing the contribution of the ferromagnetic Mn3O4 phase with decreasing size for nanoparticles about 3 nm. Cytotoxicity evaluation in cancerous and noncancerous cells in the range of 5.0–50.0 μg mL?1 shows low toxicity for cancerous cells and lack of the same for healthy cells lines. Related to the magnetic properties, CMDex‐MnONP presents significant r1 relaxivity and low r2/r1 relaxivity ratio. The results suggest that these nanoparticles display characteristics for potential applications as an MRI T1 contrast agent.  相似文献   

4.
P.G. Li  M. Lei  X. Guo 《Applied Surface Science》2009,255(6):3843-3847
In this paper, GaN nanoparticles were firstly synthesized through a facile solid-state reaction using an organic reagent cyanamide (CN2H2) and Ga2O3 as precursors. The structural properties were investigated in detail. It is found that these nanoparticles having average size of 40 nm were N-deficient with the N vacancies reaching as high as 12%. The Raman scattering spectrum of these nanoparticles presented some interesting features. The room-temperature frequency spectrum of the relative dielectric constant ?r was measured and indicated that these nanoparticles exhibited sharp enhancement at low frequency range comparing with GaN nanomaterials and N-deficient microparticles. It is thought both the rotation direction polarization (RDP) and the space charge polarization (SCP) process should be responsible for the enhancement of ?r in these N-deficient GaN nanoparticles.  相似文献   

5.
Superparamagnetic MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrite (ISF) nanoparticles with narrow size distribution having average diameters of 6-8 nm were synthesized by a diol reduction of organic metals and the surface was modified to be hydrophilic by coating with succimer. Magnetic resonance imaging (MRI) contrast enhancement by dipolar coupling defined interactions between the synthesized ISFs and protons in the bulk water was investigated with initial susceptibility, magnetization and anisotropy of the succimer-coated ISFs. The relaxivity ratios, r2/r1, for MnFe2O4, Fe3O4 and CoFe2O4 were measured to be 12.2, 23.1 and 62.3, respectively, which demonstrate the potential usefulness of these magnetic nanoparticles as T2 contrast agents for MRI.  相似文献   

6.
We demonstrate a single-step facile approach for highly water-stable assembly of amine-functionalized Fe3O4 nanoparticles using thermal decomposition of Fe-chloride precursors in ethylene glycol medium in the presence of ethylenediamine. The average size of nanoassemblies is 40±1 nm, wherein the individual nanoparticles are about 6 nm. Amine-functionalized properties are evident from Fourier transform infrared spectrometer (FTIR), thermal and elemental analyses. The saturation magnetization and spin-echo r2 of the nanoassemblies were measured to be 64.3 emu/g and 314.6 mM−1 s−1, respectively. The higher value of relaxivity ratio (r2/r1=143) indicates that nanoassemblies are a promising high-efficiency T2 contrast agent platform.  相似文献   

7.
New trinuclear gadolinium(III) complex having 2-bromoisovaleric acid pendant arm is reported. The longitudinal relaxivity (r 1p) of the complex is 23.17 mM?1 s?1 which correspond to a “per Gd” relaxivity of 7.72 mM?1 s?1. The transverse relaxivity (r 2p) of the complex is 24.79 mM?1 s?1 which correspond to a “per Gd” value of 8.26. The complex exhibit r 1p and r 2p values of 29.19 and 35.20, respectively, in the presence of HSA. The complex also shows pH dependant relaxivity which is an added advantage of the complex for utilization in cancer cell magnetic resonance imaging. The higher relaxivity values in water and HSA indicates a compact solution structure for the complexes and a restricted internal motion about the amide spacer.  相似文献   

8.
In this study, manganese tellurite (MnTeO3) nanoparticles are developed as theranostic agents for magnetic resonance imaging (MRI)-guided photothermal therapy of tumor. MnTeO3 nanoparticles are synthesized via a simple one-step method. The as-synthesized MnTeO3 nanoparticles with uniform size show good biocompatibility. In particular, MnTeO3 nanoparticles exhibit a high photothermal conversion efficiency (η = 26.3%), which is higher than that of gold nanorods. Moreover, MnTeO3 nanoparticles also have high MRI performance. The longitudinal relaxivity (r1) value of MnTeO3 nanoparticles is determined to be 8.08 ± 0.2 mm −1 s−1, which is higher than that of clinically approved T1-contrast agents Gd-DTPA (4.49 ± 0.1 mm −1 s−1). The subsequent MnTeO3 nanoparticles-mediated photothermal therapy displays a highly efficient ablation of tumor cells both in vitro and in vivo with negligible toxicity. It is demonstrated that MnTeO3 nanoparticles can serve as promising theranostic agents with great potentials for MRI-guided photothermal therapy.  相似文献   

9.
The in vitro contrast efficacy of liposome encapsulated gadolinium-[10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid] (GdHPDO3A) has been assessed by relaxometry. The internal concentrations were 150 and 250 mM Gd. Two types of liposome compositions were investigated: a phospholipid blend consisting of both hydrogenated phosphatidylcholine (HPC) and phosphatidylserine (HPS) with a gel-to-liquid crystalline phase transition temperature (Tm) of 50°C, and a mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) with a Tm of 41°C. The investigated liposome size range was 70–400 nm. The T1 and T2 relaxivities (r1 and r2) of liposome encapsulated GdHPDO3A were significantly reduced at 37°C and 0.47 T, compared to those of non-liposomal metal chelate, due to an exchange limitation of the dipolar relaxation process. The highest relaxivity values were obtained for the DPPC/DPPG liposomes, and were attributed to a higher liposome water permeability and to a more efficient water exchange across the membrane. A reduction in liposome size increased the r1, confirming the exchange limited dipolar relaxation. The increased r1 with increasing temperature demonstrated the prerequisite of rapid water exchange between the interior and exterior of the liposome for efficient dipolar relaxation enhancement. Susceptibility effects were present in the liposome systems as the r2/r1 ratio increased with increasing liposome size and internal Gd concentration. In summary, the current work has shown the influence of key physicochemical properties, such as liposome size, membrane composition and permeability, on the in vitro relaxivity of liposome encapsulated GdHPDO3A.  相似文献   

10.
Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4?C5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.  相似文献   

11.
陈青  孙民华* 《物理学报》2013,62(3):36101-036101
采用分子动力学方法和镶嵌原子势, 模拟了4000个Cu原子和13500个Cu原子(简称Cu4000和Cu13500)组成的纳米颗粒以及块体Cu的等温晶化过程. 通过对这些颗粒在晶化过程中结构和动力学行为的分析研究, 发现低温时, 不同尺寸的纳米Cu颗粒均出现多步晶化, 且晶化时间的分布曲线远比高温时范围大; 除了温度, 颗粒尺寸对晶化行为也有重要的影响, 尺寸越大, 晶化时间越长, 最终的晶化程度越高; 但是晶化时间随尺寸增大而增加的趋势不会一直持续, 发现存在一个临界尺寸rc, 小于rc时, 晶化时间随颗粒尺寸增大而增加, 大于rc时,晶化时间随尺寸增大而减小.  相似文献   

12.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

13.
It is well known that some ferromagnetic properties like Curie temperature are size dependent. In this Letter we will report that the spin-reorientation temperature of Nd2Fe14B material is also size dependent. By using a surfactant-assisted ball milling technique, Nd2Fe14B nanoparticles with different size about 6, 20 and 300 nm were successfully obtained. Spin-reorientation transition temperature of the NdFeB nanoparticles was then determined by measuring the temperature dependence of DC and AC magnetic susceptibility. It was revealed that the spin-reorientation transition temperature (Tsr) of the nanoparticles is strongly size dependent. Tsr of the 300 nm particles is lower than that of the bulk raw material while the Tsr of the 20 nm particles is significantly lower than that for the 300 nm particles. The physics behind this size dependence is discussed.  相似文献   

14.
Superparamagnetic and monodispersed aqueous ferrofluids of Zn substituted magnetite nanoparticles (ZnxFe3−xO4, x=0, 0.25, 0.3, 0.37 and 0.4) were synthesized via hydrothermal-reduction route in the presence of citric acid, which is a facile, low energy and environmental friendly method. The synthesized nanoparticles were characterized by X ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and the dynamic light scattering (DLS) method. The results showed that a certain amount of citric acid was required to obtain single phase Zn substituted magnetite nanoparticles. Citric acid acted as a modulator and reducing agent in the formation of spinel structure and controlled nanoparticle size and crystallinity. Mean particle sizes of the prepared nanoparticles were around 10 nm. The results that are obtained from XRD, magnetic and power loss measurements showed that the crystallinity, saturation magnetization (MS) and loss power of the synthesized ferrofluids were all influenced by the substitution of Zn in the structure of magnetite. The Zn substituted magnetite nanoparticles obtained by this route showed a good stability in aqueous medium (pH 7) and hydrodynamic sizes below 100 nm and polydispersity indexes below 0.2. The calculated intrinsic loss power (ILP) for the sample x=0.3 (e.g. 2.36 nH m2/kg) was comparable to ILP of commercial ferrofluids with similar hydrodynamic sizes.  相似文献   

15.
Fabrication and characterization of magnetic Fe3O4-CNT composites   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) decorated with magnetite nanoparticles on their external surface have been fabricated by in situ solvothermal method, which was conducted in benzene at 500 °C with ferrocene and CNTs as starting reagents. The as-prepared composites were characterized using XRD, FTIR, SEM and TEM. It has been found that the amount of magnetite nanoparticles deposited on the CNTs can be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe3O4-CNT composites display good ferromagnetic property at room temperature, with a saturation magnetization value (Ms) of 32.5 emu g−1 and a coercivity (Hc) of 110 Oe.  相似文献   

16.
ABSTRACT

The effect of polymer coating on MNR relaxometry of maghemite nanoparticles has been studied. The samples were carefully sorted by size in order to reach narrow size distribution (<0.2) with size ranging from 4.5 to 12.5?nm. Relaxation dispersion profile as well as studies at a fixed Larmor frequency, were recorded for numerous either uncoated or polymer coated samples. The NMR relaxivities r1 and r2 increase with nanoparticle diameter. We have analysed the role of polydispersity for nanoparticles with the same mean size on the dispersion curves. We have compared the role of coating on nanoparticles NMR relaxivity between bare and poly(sodium acrylate-co-maleate) coated nanoparticles. We have investigated the influence of nanoparticle size on the T1 and T2 activation energy Ea. While Ea decreases with nanoparticle diameter when determined from T1, it increases from T2 determination. The influence is more important for small particles (<9?nm) than for big particles (>9?nm). Moreover, the PAAMA coating changes the energy Ea obtained from T2: Ea becomes independent of the nanoparticle diameter. These results highlight the need of a complete characterisation of the role of the coating on the relaxation of magnetic particles.  相似文献   

17.
In this work magnetite (Fe3O4) nanoparticles coated with titanium dioxide (TiO2) were prepared by a novel non-thermal method. In this method, magnetite and pure TiO2 (anatase) nanoparticles were individually prepared by the sol–gel method. After modifying the surface of magnetite nanoparticles by sodium citrate, titanium dioxide was coated on them without using conjunction or heat treatment to obtain Fe3O4:TiO2 core–shell nanoparticles. XRD, EDX, SEM, TEM and VSM were used to investigate the structure, morphology and magnetic properties of the samples. The average crystallite size of the powders was measured by Scherrer's formula. The results obtained from different measurements confirm the formation of Fe3O4:TiO2 core–shell nanoparticles with a decrease in saturation magnetization. Hysteresis loops of the core–shell nanoparticles show no exchange bias effects, which confirms that there is no interaction or interdiffusion at the interface.  相似文献   

18.
Mössbauer spectroscopy, proton relaxometry, and transmission electron microscopy are used to study magnetite nanoparticles designed for creating diagnostic contrast media. Superparamagnetic magnetite nanoparticles with a size of 5–7 nm and blocking temperature of T b = 50 K are examined as a component of diagnostic contrast media with relaxation times T 1 and T 2 capable of circulating in the bloodstream for a long time. Larger ferrimagnetic nanoparticles (30–40 nm) can be concentrated in pathological tissues by applying an external magnetic field, thereby providing a means for hyperthermia.  相似文献   

19.
The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe3O4) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe3O4) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO2) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (Tg). The magnetic results suggest that coercivity (HC) and squareness (Mr/Ms) of the loop increases with increasing doping percent of cerium.  相似文献   

20.
Clinical contrast agents (CAs) currently used in magnetic resonance imaging (MRI) at low fields are less effective at high magnetic fields. The development of new CAs is mandatory to improve diagnostic capabilities of the new generation of high field MRI scanners. The purpose of this study is to synthesize uniform, water dispersible LnF3 (Ln = Ho, Dy) nanoparticles (NPs) and to evaluate their relaxivity at high magnetic field (9.4 T) as a function of size and composition. Two different types of HoF3 NPs are obtained by homogeneous precipitation in ethylene glycol at 120 °C. The use of holmium acetate as holmium precursor leads to rhombus‐like nanoparticles, while smaller, ellipsoid‐like nanoparticles are obtained when nitrate is used as the holmium salt. To explain this behavior, the mechanism of formation of both kinds of particles is analyzed in detail. Likewise, rhombus‐like DyF3 nanoparticles are prepared following the same method as for the rhombus‐like HoF3 nanoparticles. We have found, to the best of knowledge, the highest transverse relaxivity values at 9.4 T described in the literature for this kind of CAs. Finally, the LnF3 NPs have shown negligible cytotoxicity for C6 rat glioma cells for concentrations up to 0.1 mg mL?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号