首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Polycrystalline ferrites with general formula Co0.5CdxFe2.5−xO4 (0.0?x?0.5) were prepared by sol-gel method. The dielectric properties ε′, ε″, loss tangent tan δ and ac conductivity σac have been studied as a function of frequency, temperature and composition. The experimental results indicate that ε′, ε″, tan δ and σac decrease as the frequency increases; whereas they increase as the temperature increases. These parameters are found to increase by increasing the concentration of Cd content up to x=0.2, after which they start to decrease with further increase in concentration of Cd ion. The dielectric properties and ac conductivity in studied samples have been explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model and the hoping between adjacent Fe2+ and Fe3+ as well as the hole hopping between Co3+and Co2+ ions at B-sites. The values of activation energies Ef for conduction process are determined from Arrhenius plots, and the variations in these activation energies as a function of Cd content are discussed. The complex impedance analysis is used to separate the grain and grain boundary of the system Co0.5CdxFe2.5−xO4. The variations of both grain boundary and grain resistances with temperature and composition are evaluated in the frequency range 42 Hz-5 MHz.  相似文献   

2.
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε′) and dielectric loss (ε″) were measured. The Cole–Cole diagram determined complex impedance for different temperatures.  相似文献   

3.
The complex permittivity (ε′–″), complex permeability (μ′–″) and microwave absorption properties of ferrite–polymer composites prepared with different ferrite ratios of 50%, 60%, 70% and 80% in polyurethane (PU) matrix have been investigated in X-band (8.2–12.4 GHz) frequency range. The M-type hexaferrite composition BaCo+20.9Fe+20.05Si+40.95Fe+310.1O19 was prepared by solid-state reaction technique, whereas commercial PU was used to prepare the composites. At higher GHz frequencies, ferrite's permeabilities are drastically reduced, however, the forced conversion of Fe+3 to Fe+2 ions that involves electron hopping, could have increased the dielectric losses in the chosen composition. We have measured complex permittivity and permeability using a vector network analyzer (HP/Agilent model PNA E8364B) and software module 85071. All the parameters ε′, ε″, μ′ and μ″ are found to increase with increased ferrite contents. Measured values of these parameters were used to determine the reflection loss at various sample thicknesses, based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 80% ferrite content has shown a minimum reflection loss of −24.5 dB (>99% power absorption) at 12 GHz with the −20 dB bandwidth over the extended frequency range of 11–13 GHz for an absorber thickness of 1.6 mm. The prepared composites can fruitfully be utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).  相似文献   

4.
Nanometric nickel copper ferrites Ni1−xCuxFe2O4, 0≤x≤0.45 were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single phase cubic spinel structure. The lattice parameter (a) is increased with increasing Cu2+ ion substitution. The crystallite size was calculated from XRD data and compared with that obtained from TEM micrographs. A significant increase in the density is observed with increasing Cu content. The IR absorption spectra were used for the detection and confirmation of the chemical bonds in spinel ferrites. The dielectric constant ε′ and dielectric loss showed a decrease with increasing frequency for all samples. The decrease in the ac conductivity was ascribed to the increase in hopping length.  相似文献   

5.
The structure, electric and dielectric properties of In-substituted Mg-Cu-Mn ferrites having the general formula of Mg0.9Cu0.1Mn0.1InxFe1.9−xO4 with 0.0≤x≤0.4 have been studied. X-ray diffraction (XRD) patterns of the samples indicated the formation of single-phase cubic spinel structure up to 0.2 and mixed phase (cubic and tetragonal phase) for samples x≥0.3. The relation of conductivity with temperature revealed a semiconductor to semimetal behavior as In+3 concentration increases. Variation in the universal exponent s with temperature indicates the presence of two hopping conduction mechanisms: the correlated barrier hopping (CHB) at low In+3 content x≤0.1 and small-polaron (SP) hopping at In+3 content x≥0.2. The variation in dielectric permittivity (ε′, ε″) with temperature at different frequencies shows a normal behavior for the studied compounds, while the variation in dielectric loss tangent with frequency at different temperatures shows abnormal behavior with more than relaxation peak. The conduction mechanism used in the present study has been discussed in the light of electron exchange between Fe3+ and Fe2+ ions and hole hopping between Mn2+ and Mn3+ ions at the octahedral B-sites.  相似文献   

6.
Films of PVA/PVP blend (50/50) filled with different concentrations of NiCl2 were prepared by casting method. The prepared films were investigated by different techniques. XRD scans demonstrated that the peak intensity at 2θ≈20° decreased and the band width increased with increase in the concentrations of NiCl2 content, which implied decrease in the degree of crystallization and hence causes increase in the amorphous region. UV-vis analysis revealed that the values of the optical band gap are affected with increase in NiCl2 content. This indicates the formation of charge transfer complexes between the polymer blend and the filler. The rise of conductivity is significant with increased concentration of NiCl2 filler; this reveals an increase in degree of amorphosity. AC conductivity (σac) behavior of all the prepared films was investigated over the frequency range 42 Hz-5 MHz and under different isothermal stabilization in the temperature range 313-393 K. It suggests that the hopping mechanism might be playing an important role in the conduction process in high frequency region. The dielectric behavior was analyzed using dielectric permittivity (ε´, ε″) dielectric loss tangent (tan δ) and electric modulus (M″). The decrease in dielectric permittivity was observed with increase in the concentration of NiCl2 filler. This suggests the role of NiCl2 as filler to improve the electrical conductivity of PVA/PVP blend.  相似文献   

7.
Polycrystalline samples of U-type hexaferrite series: (Ba1−3xLa2x)4Co2Fe36O60 with 0.10≤x≤0.20 in step of 0.05, are prepared by conventional solid state reaction route. Partial substitution of Ba2+ ions with La3+ ions enhances the electron hopping and reduces the magnetic interaction in the samples over the entire X-band frequencies; leading to wide band microwave absorption in all sample. Relative complex permittivity (εr=ε′−″) and permeability (μr=μ′−″) of the prepared samples were measured using Vector Network Analyzer (VNA, Agilent PNA-L N5230A) for X-band (8.2-12.4 GHz) frequency range. The maximum absorption of 99.8% was obtained for x=0.10 sample for thickness tm=1.8 mm and all sample showed absorption ≥96%. The reflection loss (RL) calculated using the measured parameter r=ε′−″ and μr=μ′−″) shows good agreement when compared with the return loss measured directly using VNA for sample x=0.20. The material can be expected to find relevance in suppression of electromagnetic interference (EMI) shielding and reduction of radar signatures.  相似文献   

8.
M-type hexagonal ferrite composition, Ba(1−x)SrxFe12O19 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), was prepared by a two route ceramic method. Complex permittivity (ε′−″) and complex permeability (μ′−″) have been measured using a network analyzer from 8.2 to 12.4 GHz X-ray diffraction confirmed the M-type hexagonal structure and a scanned electron micrograph was used to analyze the grain size distribution of ferrite. Substitution of Sr2+ ions causes an increase in porosity that deteriorates the electromagnetic and microstructural properties in the doped samples. Both dielectric constant and dielectric loss are enhanced in comparison to the permeability and magnetic loss over the entire frequency region. This is due to a resistivity variation and the formation of Fe2+ ions, which increases the hopping mechanism between Fe2+ and Fe3+ ions.  相似文献   

9.
Dielectric constant (ε′), AC conductivity (σ), and seebeck coefficient (S) have been measured for the ferrite samples of the general formula Mn0.5Zn0.5RyFe2O4; where R=Dy, Gd, Sm, Ce, and La prepared by standard ceramic technique and sintered at 1200 °C with a heating rate 4 °C/min. X-ray diffractograms show that all samples posses the spinel structure with the appearance of small peaks representing secondary phases. There is a lowering in the porosity starting after Sm-doped samples due to the presence of the secondary phases, which limits the grain growth. Due to seebeck measurements the manganese–zinc (Mn–Zn) ferrite doped with the rare earth has been classified as P-type semiconductors. It is possible to increase the electrical resistivity by using a small quantity of Dy3+ ions substitutions owing to the structural heterogeneity generated by the insulating intergranular layers. The isolation of the grains is the most promising approaches for further reduction in the eddy current losses at the operating frequencies.  相似文献   

10.
The samples Ni1+xyZnyTix Fe2−2xO4; y=0.1, 0.0≤x≤0.5 were prepared in a single-phase spinel structure as indicated from X-ray analysis. Electrical conductivity and dielectric measurements at different temperatures from 300 K to 600 K in the frequency range from 42 Hz to 5 MHz have been analyzed. The relation of conductivity with temperature revealed a semiconductor to semimetallic behavior as Ti4+ concentration increases. The conduction mechanism depends mainly on the valence exchange between the different metal ions in the same site or in different sites. The dielectric constant as a function of temperature and frequency showed that there is a strong dependence on the compositional parameter x. The electrical modulus has been employed to study the relaxation dynamics of charge carriers. The result indicates the presence of correlation between motions of mobile ion charges. The activation energies extracted from M′(ω) and M″(ω) peaks are found to follow the Arrhenius law. The electrical conductance of the samples found to be dependent on the temperature and frequency.  相似文献   

11.
《Current Applied Physics》2010,10(4):975-984
Polycrystalline nickel–zinc–copper ferrites with chemical formula Ni0.6+xZn0.2Cu0.2VxFe2−2xO4,(0.0  x  0.25) were prepared by the ceramic route. The X-ray diffraction (XRD) analysis of the samples results confirms single-phase spinel structure. Scanning electron microscopy (SEM) of the prepared ferrites reveal that vanadium addition resulted in a rapid grain growth with large pores trapped inside the grains as the vanadium concentration increases. The ac conductivity σac has been studied as a function of frequency and temperature over the temperature range (300–600 K). The results obtained for these materials reveal a semiconductor – to semimetal transition as V5+ content increases. All studies composition exhibit a transition with change in the slope of conductivity. The obtained temperature Tc is found to be decrease with the increasing vanadium content. The hopping of electrons between Fe3+ and Fe2+ as well as the hole hopping between Ni3+ and Ni2+ are found to responsible for the conduction mechanism. The relation of the universal exponent s with temperature gives evidence for the presence of the correlation barrier hopping (CHB) mechanism in these compounds. The impedance technique has been used to study effect of grain and grain boundary on the electrical properties. The analysis data show only one semi-circle for all samples except for sample with x = 0.05. The results suggested that the conduction mechanism takes place predominantly through the grain in the studied samples.  相似文献   

12.
Lanthanum-substituted bismuth titanate, Bi3.5La0.5Ti3O12 (i.e., x=0.5 in Bi4−xLaxTi3O12), thin films have been grown on Pt/Ti/SiO2/Si substrates using pulsed laser deposition. The frequency dependence of the real part ε′(ω) and the imaginary part ε″(ω) of the dielectric constant has been studied. The ε′(ω) does not show any sudden change within the frequency range of 102-106 Hz. In contrast, the ε″(ω) shows a large dispersion as frequency decreases. The observed relaxation behavior in ε″(ω) can be explained in terms of a migration of oxygen vacancies in (Bi2O2)2+ layers, not in Bi2Ti3O10 perovskite layers.  相似文献   

13.
Nanoparticles of polycrystalline NiFe2−xCuxO4 (0.0≤x≤0.05) ferrites were prepared through the modified citrate-gel method. The samples were obtained as dried gel after the successful chemical reaction of their respective metal nitrate solutions in the midst of citric acid as catalyst. X-ray diffraction (XRD) and selective area electron diffraction (SAED) confirmed the single phase nature of all the samples with an average particle size of 19.8 (±1). Fourier transformation infrared spectroscopy (FTIR) shows the presence of two broad vibrational bands between 400 and 1000 cm−1 corresponding to the tetrahedral and the octahedral sites. The variation of dielectric properties (ε′, ε″, tan δ) and ac conductivity (σac), with frequency reveals that the dispersion is due to the Maxwell–Wagner type of interfacial polarization in general and due to hopping of charges between Fe+2 and Fe+3 as well as between Ni+2 and Ni+3 ions at B-sites. The complex impedance spectroscopy has been used to study the effect of grain and grain boundary on the electrical properties of all the ferrite nanoparticles.  相似文献   

14.
A sol-gel combustion method has been successfully employed for the synthesis of Sr-hexaferrite nanomaterials doped with Er3+ and Ni2+ at strontium and iron sites, respectively. The X-ray diffraction analysis confirmed the single magnetoplumbite phase and the crystallite size was found to be in the range of 14-16 nm, suitable for obtaining signal-to-noise ratio in the high density recording media. The magnetic properties such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) were calculated from hysteresis loops. Ms, Mr and Hc are observed to increase with the Er-Ni content. The dielectric constant (ε´) and dielectric loss (tan δ) is found to decrease with the increase in frequency and is explained on the basis of Maxwell-Wagner and Koops theory. The decrease in dielectric constant and dielectric loss but increase in saturation magnetization and remanence with Er-Ni content suggests that the materials are suitable for applications in microwave devices and high density recording media .  相似文献   

15.
Magnetoresistive La0.67−yYyBa0.33MnO3/LaAlO3 thin films were prepared by the sol-gel spin-coating method. Our resistivity and the electron spin resonance (ESR) measurements indicate that the main factor determining the metal-insulator transition temperature Tm is the cation disorder represented by the cation radii variance σ2, and that ferromagnetic insulating regions coexist in the ferromagnetic metallic phase. In the paramagnetic phase, the dissociation energy of spin clusters and the polaron hopping energy obtained from the ESR intensity and linewidth also displayed a prominent dependence on σ2. Polaron localization due to Jahn-Teller distortions appears to be responsible simultaneously for the decrease in the ferromagnetic order and for the increase in the orbital order.  相似文献   

16.
《Current Applied Physics》2009,9(5):1072-1078
Electrical conductivity and dielectric measurements have been investigated for four different average grain sizes ranging from 3 to 7 nm of nanocrystalline Ni0.2Cd0.3Fe2.5−xAlxO4 (0.0  x  0.5) ferrites. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of the Al doped Ni–Cd ferrites. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the studied samples. The variation of impedance properties with temperature and composition has been studied in the frequency range of 120 Hz–5 MHz between the temperatures 300–473 K. The hopping of electrons between Fe3+ and Fe2+ as well as hole hopping between Ni3+ and Ni2+ ions at octahedral sites are found to be responsible for conduction mechanism. The dielectric constant and loss tangent (tan δ) are found to decrease with increasing frequency, whereas they increase with increasing temperature. The dielectric constant shows an anomalous behavior at selected frequencies, while the temperature increases, which is expected due to the generation of more electrons and holes as the temperature increases. The behavior has been explained in the light of Rezlescu model.  相似文献   

17.
Polycrystalline solid state solutions of BaySr1 − yCl2 have been produced; these adopt the cubic fluorite phase for y ≤ 0.30. The cubic structure minimizes optical scattering from grain boundaries, and so for y ≤ 0.30 the materials are transparent, a key advantage for ceramic scintillators and phosphors. The substitution of Sr2+ ions with Ba2+ ions has the advantage that it substantially increases the x-ray absorption coefficient with respect to pure SrCl2. Additional doping with rare earth ions such as Sm2+ and Eu2+ gives bright x-ray phosphor materials. The Sm or Eu-doped materials show a broad 4f55 d1 → 4f6 emission peaked at 685 nm or a broad 4f65 d1 → 4f7 emission peaked at 406 nm respectively. These materials have been tested as x-ray phosphors and the spatial resolution was determined to be at least 6 LP/mm, whilst the x-ray radioluminescence intensity is around 40% that of the commercial x-ray phosphor Gd2O2S:Tb. A stratified phoswich structure, comprising Eu and Sm-doped layers of BaySr1 − yCl2 was produced in which the relative intensities of the two emissions varies with x-ray beam energy; this can be used for energy discrimination in imaging by way of emission spectra as opposed to the more commonly used pulse shape discrimination. A dual energy imaging technique based on these bi-layered structures and utilizing a semi-professional grade digital SLR camera is described and composition-sensitive imaging has been demonstrated.  相似文献   

18.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

19.
The dependencies of complex dielectric functions (the dielectric constant, ε 1, and the dielectric loss, ε 2), on frequency and temperature of zinc phthalocyanine (ZnPc) thin films sandwiched between either gold or aluminum Ohmic-electrode contacts have been investigated in the temperature range of 93–470 K and frequency range 0.1–20 kHz. It is found that both values of ε 1 and ε 2 decrease with increasing frequency and increase with decreasing temperature. The rate of change depends greatly on the temperature and frequency ranges under consideration. Around room temperature, neither ε 1 nor ε 2 show any appreciable change through the whole range of frequencies. Thus, the dielectric dispersion is found to include of both dipolar and interfacial polarizations. The dependencies of both dielectric functions on frequency at different temperatures were found to follow a universal power law of the form ω n , where the index 0<n≤?1. This indicates that the correlated barrier hopping (CBH) model is a suitable mechanism to describe the dielectric behavior in ZnPc films. Furthermore, the results of the dielectric response indicate that polarization in these films could be in the form of non-Debye polarization. However, the Debye polarization can be traced below room temperature. The obtained results of the relaxation-time, τ, dependency on temperature have shown that a thermally-activated process may be dominated in ZnPc thin films conduction at high temperatures. Partial phase transition (from α- to β-phase) has been observed around 400 K in molecular relaxation-time, τ, and optical dielectric constant, ε . Arrhenius behavior has been observed for all the dielectric loss and conductivity relaxation-times above room temperature and their activation energies are explained and reported. The optical dielectric constant ε was found to increase with temperature.  相似文献   

20.
Temperature and frequency dependence of dielectric constant (ε′) and dielectric loss (ε″) are studied in glassy Se70Te30 and Se70Te28Zn2. The measurements have been made in the frequency range (8-500 kHz) and in the temperature range 300 to 350 K. An analysis of the dielectric loss data shows that the Guintini's theory of dielectric dispersion based on two-electron hopping over a potential barrier is applicable in the present case.No dielectric loss peak is observed in glassy Se70Te30. However, such loss peaks exist in the glassy Se70Te28Zn2 in the above frequency and temperature range. The Cole-Cole diagrams have been used to determine some parameters such as the distribution parameter (α), the macroscopic relaxation time (τ0), the molecular relaxation time (τ) and the Gibb's free energy for relaxation (ΔF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号