首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The temperature and composition dependence of magnetic properties of Co–Cr co-substituted magnesium ferrite, Mg1−xCoxCrxFe2−xO4 (x=0.0–0.5), prepared by novel polyethylene glycol assisted microemulsion method, are studied. The synthesized materials are characterized by the Mössbauer spectrometer and standard magnetic measurements. Major hysteresis loops are measured up to the magnetic field of 50 kOe at 300, 200 and 100 K. The high field regimes of these loops are modeled using the Law of Approach to saturation to determine the first-order cubic anisotropy coefficient and saturation magnetization. Both the saturation magnetization and the anisotropy coefficient are observed to increase with the decrease in temperature for all Co–Cr co-substitution levels. Also, both the saturation magnetization and the anisotropy coefficient achieved maximum value at x=0.3 and x=0.2, respectively. Explanation of the observed behavior is proposed in terms of the site occupancy of the co-substituent, Co2+ and Cr3+ in the cubic spinel lattice.  相似文献   

2.
Series of polycrystalline samples of Zn2−xCuxBaFe16O27 were prepared by usual ceramic methods, where x=0.0, 0.4, 0.6, 0.8, 1.0, 1.4. X-ray analysis done at room temperature using CoKα with λ=1.790 Å confirms the presence of W-type hexaferrite phase structure. Saturation magnetization and hysteresis loops curves measurements at room temperature were studied as a function of Cu2+ substitution. It can be seen that the Cu2+ content slightly decreases the saturation magnetization from 25 to 20 emu g−1; all hysteresis loops are closed, which indicates low anisotropy field and low saturation magnetization field. The dc conductivity and thermoelectric power were measured in a range from room temperature up to T=750 K for all samples. The thermoelectric power decreases on increasing Cu2+ content, and the conductivity increases with temperature. The value of the charge-carrier concentration increases by increasing the temperature and Cu2+ content.  相似文献   

3.
Nanoferrites of the general formula Cu1−xMgxFe2O4 with 0≤x≤0.6 were prepared by standard ceramic and wet methods. The structure was studied by X-ray diffraction and IR spectroscopy. The density and lattice constant were calculated and reported. The particle size of the prepared nanoferrites ranged from 8.7 to 41.1 nm. It was found that the lattice parameter decreases with increasing cation substitution of Mg2+ due to the difference of ionic radius and atomic mass. The dc magnetic susceptibility was measured out using Faraday's method. The magnetic hysteresis measurement was performed using a vibrating sample magnetometer. Magnetic constants such as Curie temperature, effective magnetic moment, saturation magnetization, remanent magnetization and corecivicty were obtained and reported. The magnetic constants decrease with increasing Mg2+, except the remanent magnetization which increased.  相似文献   

4.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated.  相似文献   

5.
Nanocrystalline cobalt ferrites with nominal composition CoCrxFe2−xO4 ranging from x=0.0 to 0.5 with step increment of 0.25 were prepared by sol–gel auto combustion and chemical co-precipitation techniques. A comparative study of structural, electrical and magnetic properties of these ferrites has been measured using different characterization techniques. Structural and micro-structural studies were measured using X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy and atomic force microscopy. Crystallite sizes of the series are within the range of 12–29±2 nm. Lattice parameters decrease by increasing Cr3+ concentration. FTIR confirms the presence of two lattice absorption bands. DC electrical resistivity increases to a value of ∼1010 Ω-cm with increase in Cr3+ concentration, but the most significant increase is in samples prepared by sol–gel combustion. Dielectric properties have been measured as a function of frequency at room temperature. Dielectric loss decreases to 0.1037 and 0.0108 at 5 MHz for chemical co-precipitation and sol–gel combustion, respectively. Impedance measurements further helped in analyzing the electrical properties and to separate the grain and grain boundary resistance effects using a complex impedance analysis. Magnetic parameters were studied using a vibrating sample magnetometer in the applied field of 10 kOe. The saturation magnetization decreased from 63 to 10.8 emu/gm with increase in Cr3+ concentration.  相似文献   

6.
Cu2+ ions substituted Ni-ferrite having the general formula Ni1-xCuxFe2O4 (where x=0.0, 0.2, 0.4 and 0.6) were prepared by the sintering ceramic method. X-ray diffraction, infrared spectra and magnetization of the above ferrite were carried out to investigate structural and magnetic characterization of this ferrite. Crystallite size, lattice parameters, positional oxygen parameter and ionic radii for both tetrahedral and octahedral sites were calculated. The experimental lattice parameter was found to vary between 8.3856 and 8.3865 Å. The infrared spectra were measured in the frequency range 650–150 cm−1. Two prominent bands were observed, high frequency band ν1 and low frequency band ν2 were assigned to tetrahedral and octahedral sites. Bond length and force constant were also calculated for both tetrahedral and octahedral sites. The effect of Cu concentration on, saturation magnetization, coercivity ratio and magnetic moment were investigated using vibrating sample magnetometer (VSM). It was found that both saturation magnetization (MS) and coercivity (Hc) decreases with increasing in Cu content.  相似文献   

7.
Magnetization and permeability of polycrystalline ferrites with general formula CdxMg1−xFe2−yCryO4 (x=0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0, 0.05 and 0.10) were studied. Study of saturation magnetization reveals that the Neel's two-sublattice model exists upto x=0.4, for y=0, 0.05 and 0.1 and a three-sublattice model (YK-model) is predominant for x>0.4 and y=0, 0.05 and 0.10. The saturation magnetization and magnetic moment were found to decrease with the increase in Cr3+ contents, which is attributed to the dilution of B–B site interaction. Variation of initial permeability with temperature revealed the long-range ferromagnetic ordering in the compounds with x=0.4. The sample with x?0.4 and y=0, 0.05 and 0.10 showed peaking behavior near Curie temperature, which is attributed to the decrease of anisotropy constant K1 to zero. Low-frequency dispersion of initial permeability suggests domain wall displacement. Addition of Cd2+ resulted in a sharp decrease in Curie temperature. With the addition of Cr3+, initial permeability was found to decrease.  相似文献   

8.
Zn1−xNixO (x=0-0.25) hierarchical microspheres were synthesized via a solvothermal process in ethylene glycol. The magnetic microspheres were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectra, X-ray photoelectron spectroscopy, room-temperature photoluminescence spectra, and vibrating sample magnetometer. The as-prepared samples take on a well-defined spherical architecture following the processes of spontaneous aggregation and localized Ostwald ripening. Dependence of the magnetization and morphology on Ni2+ content was observed. Magnetic hysteresis loops reveal that the Ni-doped ZnO microspheres exhibit ferromagnetic loops at room temperature.  相似文献   

9.
Nanocrystalline La-substituted Zn–Cu–Cr ferrites Zn0.6Cu0.4Cr0.5LaxFe1.5−xO4 (x=0.00, 0.02, 0.04, 0.06) were prepared by a rheological phase reaction method. The obtained powders were characterized by X-ray diffractometer, transmission electron microscopy and vibrating sample magnetometer. Permeability of the samples was investigated using an impedance analyzer. The results indicated that ferrite samples had the single spinel phase at low La content. Lattice parameter increased with increasing La content, while particle size calculated from Scherrer's formula decreased with increasing La content in La-substituted ferrite samples. The magnetic properties of La-substituted ferrites were strongly affected by La content. The saturation magnetization decreased, while coercivity increased with increasing La content. The variation of real permeability with La content was investigated in the frequency range of 1 MHz–1 GHz.  相似文献   

10.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

11.
We report the observation of excellent hard magnetic properties on purely single phase ErCo7−xCux compounds with x=0.3, 0.5, 0.8 and 1. Cu substitution leads to a decrease in the saturation magnetization, but enhances the uniaxial anisotropy in this system. The large anisotropy field (∼100 kOe) is attributed to the Er and the Co sublattices. Domain wall pinning effect seems to play a crucial role in determining the temperature and field dependences of magnetization in these compounds. The hard magnetic properties obtained at room temperature (RT) are comparable to the best results obtained in other RCo7 based materials.  相似文献   

12.
The Cr-substituted M-type barium hexaferrites, BaFe12−xCrxO19, with x=0.0–0.8x=0.00.8 have been successfully prepared by nitrate–citrate auto-combustion process using citric acid as a fuel/reductant and nitrates as oxidants. The resulting precursors were calcined at 1100 °C for 1 h and followed by sintering at 1200 °C for 12 h in oxygen atmosphere. The ferrites were systematically investigated by using powder X-ray diffractometer (XRD), magnetic hysteresis recorder, Mössbauer spectrometer, and scanning electron microscope (SEM). The XRD data show the formation of pure magnetoplumbite phase without any other impurity phases. Both a and c lattice parameters calculated by the Rietveld method systematically decrease with increasing Cr content. The effects of Cr3+ ions on the barium ferrites were reported and discussed in detail. The site preference of Cr3+ and magnetic properties of the ferrites have been studied using Mössbauer spectra and hystereses. The results show that the magnetic properties are closely related to the distributions of Cr3+ ions on the five crystallographic sites. The saturation magnetization systematically decreases, however, the coercivity increases with Cr concentration. The magnetization and Mössbauer results indicate that the Cr3+ ions preferentially occupy the 2a, 12k, and 4fVI sites. The average size of hexagonal platelets obtained by SEM photographs tends to decrease with respect to Cr content.  相似文献   

13.
We report on the magnetization, magnetocaloric effect, magnetic ordering temperatures, saturation magnetic moments and anisotropy of sputter-deposited GdxCr1−x alloys with Gd atomic concentrations, x, ranging from 0.13 to 0.52. The complex magnetic nature of the Gd-Cr films was revealed from the M×H isotherms, which do not show saturation even at an applied field of 70 kOe and a temperature of 2 K and do not exhibit a linear behavior at higher temperatures. For some of the samples, the isotherms were used to determine the isothermal entropy variation as a function of temperature, for a change of 50 kOe in the applied magnetic field. The saturation magnetic moment varies with x and follows the dilution law, implying that the Cr atoms do not contribute to the total moment of the Gd-Cr alloys. Both static magnetization and dynamic susceptibility measurements reveal the existence of a magnetic glassy behavior in the alloys, which occurs below a freezing temperature. The existence of anisotropy at low temperatures for all samples was revealed by their M×H hysteresis loops from which the in-plane coercive fields, Hc, were determined. A monotonical increase in Hc with increasing Gd concentration was observed.  相似文献   

14.
Lead was doped in barium hexaferrite by co-precipitation method and the Pb-doped Ba-hexaferrite with compositions of Ba1−xPbxFe12O19 was investigated for the first time at x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0. The molar ratio (Fe3+/Ba2+) of the solutions was kept 12 while pH was maintained at 13 by using NaOH (M=5) as precipitating agent. Prepared samples were sintered at 965±5 °C for three hours. Structural and morphological studies were done by X-ray diffractometer (XRD) and the scanning electron microscope (SEM). SEM micrographs confirmed the formation of hexagonal plate like structures and particle size was observed to be increased with the increase in Pb concentration. The hysteresis loops obtained from the magnetometer showed that with the increase in Pb concentration, the coercivity decreased while magnetic induction and remanence increased, which in turn increased the maximum energy product (BH)max. Lower coercivity and the moderate increase in saturation magnetization obtained from Pb doping makes the material useful for magnetic recording media and other frequency based applications.  相似文献   

15.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

16.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

17.
Nanocrystalline ferrite powder having the general formula Mg1−xCdxFe2O4+5% Sm3+ (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) was synthesized by chemical oxalate co-precipitation technique. The synthesized powder was characterized by X-ray, IR and SEM techniques. The XRD analysis confirms cubic spinel phase with orthoferrite secondary phase. The lattice constant increases with increase in Cd2+ content (x). It is smaller than that for pure Mg-Cd ferrites. The average crystallite size lies in the range 28.69-32.66 nm. Saturation magnetization and magnetic moment increase with cadmium content up to x=0.4 and decrease thereafter. This is attributed to the existence of localized canted spin. The decrease in saturation magnetization and magnetic moment beyond x=0.4 is due to the presence of triangular spin arrangement on B-site. Coercivity and remanent magnetization decrease while Y-K angles increase with Cd2+ content. The Sm3+ addition improves the magnetic properties.  相似文献   

18.
Thin films of Ge100−xFex (x in at%) alloys, fabricated by thermal co-evaporation, have an amorphous structure at compositions x<∼40, although an unidentified crystalline phase with an FCC symmetry also exists at low Fe content. Magnetization versus temperature curves show that saturation magnetization is non-zero (1 to 2.5 emu/cm3) and remains nearly unchanged up to the highest measured temperature of 350 K. Magnetic hysteresis loops at room temperature show a typical ferromagnetic shape, complete saturation occurring by 1–2 kOe. These results may indicate ferromagnetic ordering at room temperature. No definite tendency is observed in the compositional dependence of saturation magnetization.  相似文献   

19.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

20.
Li0.5−x/2CuxFe2.5−x/2O4 (where x=0.0-1.0) ferrites have been prepared by solid-state reaction. X-ray diffraction was used to study the structure of the above investigated ferrites at various sintering temperatures. Samples were sintered at 1000, 1100 and 1200 °C for 3 h in the atmosphere. For the sintering temperature of 1000 °C, Li0.5−x/2CuxFe2.5−x/2O4 undergoes cubic to tetragonal transformation for higher Cu content. However, for the sintering temperature of 1100 and 1200 °C, X-ray diffraction patterns are mainly characterized by fcc structure, though presence of tetragonal distortion was found by other temperature dependence of initial permeability curves. The lattice parameter, X-ray density and bulk density were calculated for different compositions. Curie temperature was measured from the temperature dependence of initial permeability curves. Curie temperatures of Li-Cu mixed ferrites were found to decrease with the increase in Cu2+ content due to the reduction of A-B interaction. As mentioned earlier, temperature dependence of initial permeability curves was characterized by tetragonal deformation for the samples containing higher at% of Cu. The complex initial permeability has been studied for different samples. The B-H loops were measured at constant frequency, f=1200 Hz, at room temperature (298 K). Coercivity and hysteresis loss were estimated for different Cu contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号