首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
垂直磁各向异性稀土-铁-石榴石纳米薄膜在自旋电子学中具有重要应用前景.本文使用溅射方法在(111)取向掺杂钇钪的钆镓石榴石(Gd0.63Y2.37Sc2Ga3O12,GYSGG)单晶衬底上外延生长了2—100 nm厚的钬铁石榴石(Ho3Fe5O12,HoIG)薄膜,并进一步在HoIG上沉积了3 nm Pt薄膜.测量了室温下HoIG的磁各向异性和HoIG/Pt异质结构的自旋相关输运性质.结果显示,厚度薄至2 nm的HoIG薄膜(小于2个单胞层)在室温仍具有铁磁性,且由于外延应变,2—60 nm厚HoIG薄膜都具有很强的垂直磁各向异性,有效垂直各向异性场最大达350 mT;异质结构样品表现出非常可观的反常霍尔效应和“自旋霍尔/各向异性”磁电阻效应,前者在HoIG厚度小于4 nm时开始缓慢下降,而后者当HoIG厚度小于7 nm时急剧减小,说明相较于反常霍尔效应,磁电阻效应对HoIG的体磁性相对更加敏感;此外,自旋相关热电压随HoIG厚度减薄在整个厚度范围以指数方式下降,说明遵从热激化磁振子运动规律的自旋塞贝克效应是其主要贡献者.本文结果表明HoIG纳米薄膜具有可调控的垂直磁各向异性,厚度大于4 nm的HoIG/Pt异质结构具有高效的自旋界面交换作用,是自旋电子学应用发展的一个重要候选材料.  相似文献   

2.
We present a systematic study of the structure, magnetization, resistivity, and Hall effect properties of pulsed laser deposited Fe- and Cu-codoped In2O3 and indium-tin-oxide (ITO) thin films. Both the films show a clear ferromagnetism and anomalous Hall effect at 300 K. The saturated magnetic moments are almost the same for the two samples, but their remanent moments Mr and coercive fields HC are quite different. Mr and HC values of ITO film are much smaller than that of In2O3. The ITO sample shows a typical semiconducting behavior in whole studied temperature range, while the In2O3 thin film is metallic in the temperature range between 147 and 285 K. Analysis of different conduction mechanisms suggest that charge carriers are not localized in the present films. The profile of the anomalous Hall effect vs. magnetic field was found to be identical to the magnetic hysteresis loops, indicating the possible intrinsic nature of ferromagnetism in the present samples.  相似文献   

3.
CoFe2O4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface.  相似文献   

4.
A combination of highly sensitive torque magnetometry in low magnetic fields and a phenomenological approach to magnetic anisotropy is used to probe the symmetry of the antiferromagnetically ordered state of spin S=1/2 system Cu3TeO6. The results show that the ordered state has four antiferromagnetic domains with spin axis in the 〈1±1±1〉 directions, in agreement with the previously reported neutron measurements. These results show that this approach, previously applied to ferromagnets and highly anisotropic antiferromagnets, is also successful in determining the symmetry of weakly anisotropic Heisenberg antiferromagnets with multiple spin domains. Possible microscopic origin of magnetic anisotropy is briefly discussed.  相似文献   

5.
In order to probe the influence of the surface-induced anisotropy on the impurity spin magnetization, we measure the anomalous Hall effect in thin AuFe films at magnetic fields up to 15 T. The observed suppression of the anomalous Hall resistivity at low fields as well as the appearance of a minimum in the differential Hall resistivity at higher fields can be explained by our theoretical model, which takes into account the influence of a polycrystalline film structure on the surface-induced anisotropy. Our results imply that the apparent discrepancy between different experimental results for the size effects in dilute magnetic alloys can be linked to a different microstructure of the samples.  相似文献   

6.
曹永泽  李国建  王强  马永会  王慧敏  赫冀成 《物理学报》2013,62(22):227501-227501
有无6 T强磁场条件下利用分子束气相沉积方法制备了不同厚度的Fe80Ni20薄膜. 研究发现, 薄膜的面内矫顽力随厚度增加而降低且符合Neel理论; 矩形比随厚度的增加先快速增大后缓慢降低; 6 T磁场抑制了颗粒团聚及异常长大, 并降低了薄膜表面的粗糙度, 这使薄膜的矫顽力要小于无磁场作用的薄膜, 矩形比大于无磁场作用的薄膜; 而且薄膜在垂直于基片表面的6 T磁场作用下由0 T下的面内磁各向异性转变为磁各向同性. 关键词: 强磁场 气相沉积 微观结构 磁性能  相似文献   

7.
Epitaxial thin films of Fe3O4 and CoFe2O4 on MgO (0 0 1) substrates were grown by molecular beam epitaxy at low temperature growth process. Magnetization and hysteresis loop of both films were measured to investigate magnetic anisotropic properties at various temperatures. Anomalous magnetic properties are found to be correlated with crystalline, shape, and stress anisotropies. The Fe3O4 film below Verwey structural transition has a change in crystal structure, thus causing many anomalous magnetic properties. Crystalline anisotropy and anomalous magnetic properties are affected substantially by Co ions. The saturation magnetization of Co–ferrite film becomes much lower than that of Fe3O4 film, being very different from the bulks. It indicates that the low temperature growth process could not provide enough energy to have the lowest energy state.  相似文献   

8.
Sm3Fe5O12 thin films of various thicknesses were grown on a (0 0 1)-oriented Gd3Ga5O12 substrate by pulsed laser deposition. The crystal structure of the films was strongly dependent on film thickness. The lattice was strained for thinner films due to a lattice mismatch between the film and substrate. This lattice strain was relaxed when the film thickness exceeded a critical thickness of around 660 Å. It is suggested that the epitaxial strain induces uniaxial magnetic anisotropy with an out-of-plane magnetic easy axis.  相似文献   

9.
The structure, magnetic properties and magnetostriction of Fe81Ga19 thin films have been investigated by using X-ray diffraction analysis, scanning electron microscope (SEM), vibrating sample magnetometer and capacitive cantilever method. It was found that the grain size of as-deposited Fe81Ga19 thin films is 50–60 nm and the grain size increases with increase in the annealing temperature. The remanence ratio (Mr/Ms) of the thin films slowly decreases with increase in the annealing temperature. However, the coercivity of the thin films goes the opposite way with increase in the annealing temperature. A preferential orientation of the Fe81Ga19 thin film fabricated under an applied magnetic field exists along 〈1 0 0〉 direction due to the function of magnetic field during sputtering. An in-plane-induced anisotropy of the thin film is well formed by the applied magnetic field during the sputtering and the formation of in-plane-induced anisotropy results in 90° rotations of the magnetic domains during magnetization and in the increase of magnetostriction for the thin film.  相似文献   

10.
N-doped CuCrO2 thin films were prepared by using radio frequency magnetron sputtering technique. The XRD and XPS measurements were used to confirm the existence of the N acceptors in CuCrO2 thin films. Hall measurements show the p-type conduction for all films. The electrical conductivity increases rapidly with the increase in N doping concentration, and the maximum of the electrical conductivity of 17 S cm−1 is achieved for the film deposited with 30 vol.% N2O, which is about three orders of magnitude higher than that of the undoped CuCrO2 thin film. Upon increasing the doping concentrations the band gaps of N-doped CuCrO2 thin films increase due to the Burstein-Moss shift.  相似文献   

11.
Patterned soft magnetic materials are eligible for use in magnetic random access memories. A hexagonal-lattice pattern of circular antidots was produced by optical lithography in a Co film. In order to test the effect of geometry on the local magnetisation configuration of such a structure, we performed room-temperature angle-resolved magnetisation measurements aimed to check the pinning of domain walls by the pattern's lattice. Magnetoresistance (MR) room-temperature measurements were performed at various angles between the magnetic field direction and the macroscopic electrical current vector, to clarify whether and how the local current density configuration affects the MR response. We found that the magnetoresistance is of anisotropic type (AMR) and has a local origin. Furthermore, the largely unsaturating behaviour of MR at high fields may be explained only by considering that tiny portions of the pattern constitute highly frustrated regions and align their magnetisation at rather high fields. A simplified model based on a local anisotropy term is shown to account for the experimental results for both M and MR.  相似文献   

12.
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,  相似文献   

13.
Recent studies on single crystals of cuprate oxides containing spin chains and ladders have reported large anisotropic magnon-mediated thermal conductivity. A potential use of thin films of such materials could be in the thermal management of electronic devices for the guiding of unwanted heat to a heat sink. In this article, the pulsed laser deposition and characterization of La5Ca9Cu24O41 thin films on SrLaAlO4, SrTiO3, MgO, and Si substrates are reported for the first time. The films were grown using a pulsed UV laser (KrF, 248 nm) and various substrate temperatures up to 650 °C. The XRD spectra revealed successful target-film stoichiometric transfer and high texturing of the thin films with (0 k 0) preferred orientation.  相似文献   

14.
Coherent oscillations of the magnetization were observed in magneto-optical Kerr measurements in thin films of the ferromagnetic semiconductor GaMnAs. For magnetic fields oriented in the film plane, two precession modes were observed. Their frequencies increase with the field when it is along the [100] axis, whereas they behave non-monotonically when the field is oriented along the in-plane hard axis [110]. Spectra are also presented for fields applied normal to the film plane. From the measured field-dependence of the magnon frequency, the spin stiffness and magnetic anisotropy constants were obtained.  相似文献   

15.
Ni81Fe19 and Co thin films have been fabricated and their transport properties have been investigated for potential applications in ultra sensitive magnetic field sensors. The Ni81Fe19 films exhibit an anisotropic magnetoresistance (AMR) of 2.5% with a coercivity 2.5 Oe and the Co films exhibit an AMR of 0.7% with coercivity 11 Oe. Large planar Hall effect magnetoresistance values at room temperature are reported for both cases. An unbalanced Wheatstone bridge model is proposed to describe quantitatively the observed experimental Planar Hall Effect data.  相似文献   

16.
Self-oriented BiFeO3 (BFO) thin films are prepared via chemical solution deposition method with magnetic field in-situ annealing process. The effects of magnetic annealing on the microstructure, magnetic and dielectric properties as well as magnetoelectric coupling effect of the BFO thin films are investigated. With increasing the annealing magnetic field, the crystallization quality, texture, grain boundary connectivity and densification of the films are enhanced, which is attributed to the improvement of connection and diffusion of components. The magnetization of the field-annealing films and dielectric constant as well as remanent polarization increases with increasing the strength of annealing magnetic field. In addition, it is observed that magnetocapacitance value of the magnetic-field-annealing BFO thin film is higher than the non-field-annealing one. Moreover the BFO thin films annealed at 3 kOe magnetic field show the magnetoelectric effect with 4% under 2 kOe at room temperature.  相似文献   

17.
采用脉冲激光沉积技术,在n型SrNb001Ti099O3(SNTO)单晶基片上生长p型YBa2Cu3O7-δ(YBCO)薄膜,制备出YBCO/SNTO p n结.YBCO薄膜是高度c轴织构的超导薄膜,且具有良好的超导电性.YBCO/SNTO p n结具有较好的整流特性和很好的温度与磁场稳定性. 关键词: YBa2Cu3O7-δ SrNb001Ti099O3 p n结  相似文献   

18.
To study the influence of oxygen impurities in the sputtering atmosphere on microstructure, and the magnetic and magnetotransport properties, thin films of Ni83Fe17 were deposited under dc magnetron sputtering technique into which regulated oxygen gas was introduced. The partial pressure of oxygen was varied from 2×10−7 to 3×10−6 mbar. X-ray diffraction patterns indicate the reduction of grain growth with increasing the oxygen partial pressure. The grain microstructure and the composition were confirmed through high resolution transmission electron microscopy attached with Scanning Transmission Electron Microscopy (STEM). Transition from canted to rectangular magnetic hysteresis loop was observed through magnetization measurements for samples prepared under higher oxygen partial pressure which implies the structural changes in the magnetic domain formation. These observations were further confirmed through the measurements of anisotropic magnetoresistance properties.  相似文献   

19.
We deposit Fe50PdxPt50−x alloy thin films by magnetron sputtering onto a TiN seed layer. Chemically ordered L10 films are obtained which display large perpendicular magnetic anisotropy. We find that the surface roughness of the film depends strongly on the growth and anneal conditions as well as the Pd composition of the film. Smooth films are obtained by deposition above the chemical ordering temperature and by removing Pd from the alloy.  相似文献   

20.
Soft magnetic thin films of Ni, NiFe and NiFe2O4 were prepared using reactive magnetron sputtering in various deposition conditions. Experimentally observed soft magnetic property was compared and correlated with nanocrystalline structure evolution. Ni and NiFe deposited films are textured with fcc(111) phase preferred orientation. Accordingly, grain size and lattice parameter were calculated from X-ray diffraction (111) peak line width and 2θ peak position. Addition of reactive gas oxygen in deposition process has substantial effect on crystalline structure of film. There is phase transition from the ordered NiFe (111) structure to the NiFe2O4 nanocrystalline phase. The resulting film has shown small X-ray diffraction intensity peak corresponding to (311) and (400) orientation, indicating small amount of existing NiFe2O4 phase. The mechanism has been discussed to be responsible for nanocrystallization and amorphization of NiFe2O4 films. Magnetic measurement (M-H) loop reveal soft magnetic nature of films with magnetic anisotropy. The coercivity (Hc) of films is in accordance with random anisotropy model, where Hc reduced with grain size. The structural transformation was supported by Fourier transforms infrared spectroscopy measurement. The films are highly smooth with surface roughness in the range of ∼0.53-0.93 nm. NiFe2O4 films have shown lowest surface roughness with highest electrical resistivity values. The structural, surface, magnetic and infrared spectroscopy results are observed and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号