首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the influences of the BaCu(B2O5) (BCB) additive on sintering behavior, structure and magnetic properties of iron deficient M-type barium ferrite Ba(CoTi)xFe11.8−2xO19 (BaM) have been investigated. It is found that the maximum sintered densities of BaM change from 86% to 94% as the BCB content varies from 1 to 4 wt%. Single-phase BaM can be detected by the XRD analysis in the sample with 3 wt% BCB sintered at 900 °C, and the microstructure is hexagonal platelets with few intragranular pores. This is attributed to the formation of the BCB liquid phase. Meanwhile, the experimental results illuminate that the CoTi ions prefer to occupy the 4f2 and 2b sites and the magnetic properties depend on the amount of CoTi-substitution. In addition, the chemical compatibility between BaM and silver paste is also investigated; it can be seen that BaM is co-fired well with the silver paste and no other second phase is observed. Especially, the 3 wt% BCB-added Ba(CoTi)0.9Fe11O19 sintered at 900 °C has good properties with the sintered density of 4.9 g/cm3, saturation magnetization of 49.7 emu/g and coercivity of 656.6 Oe. These results indicate that it is cost effective in the production of Low Temperature Co-fired Ceramics (LTCC) multilayer devices.  相似文献   

2.
The Ni-Cu-Zn ferrites with different contents of Bi4Ti3O12 ceramics (1-8 wt%) as sintering additives were prepared by the usual ceramic technology and sintered at 900 °C to adapt to the low temperature co-fired ceramic (LTCC) technology. The magnetic and dielectric properties of the ferrite can be effectively improved with the effect of an appropriate amount of Bi4Ti3O12. For all samples, the ferrite sintered with 2 wt% Bi4Ti3O12 has relatively high density (98.8%) and permeability, while the ferrite with 8 wt% Bi4Ti3O12 has relatively good dielectric properties in a wide frequency range. The influences of Bi4Ti3O12 addition on microstructure, magnetic and dielectric properties of the ferrite have been discussed.  相似文献   

3.
The crystalline structure and magnetic properties of M-type barium ferrite doped with small amounts of MnO2 (0, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 wt%, respectively) have been investigated by means of XRD, SEM and VSM. The results show that the crystalline structures of barium ferrite are still M-type hexagonal structure and Mn ions are distributed homogeneously in both the grains and the grain boundaries. The saturation magnetization and magnetocrystalline anisotropy constants both reach the highest values when x=0.75 wt%. The displacement of Fe ions from 4f1 to 2b site is mainly responsible for the appearance of the maximum values.  相似文献   

4.
The composite films with different weight ratio of barium ferrite to titanium dioxide are successfully prepared using sol-gel method for the first time. The morphology, crystal structure and magnetic properties of composite films are investigated with atomic force microscopy, X-ray diffraction and vibrating sample magnetometry. The results show that the composite films are uniform with no microcracks. The grain diameters are less than 100 nm. With the increase of barium ferrite, the grain diameter decreases. The composite films are composed of M-type hexagonal barium ferrite and rutile titanium dioxide. The composite films possess the excellent magnetic properties. The specific saturation magnetization and coercivity reach 18.3 emu/g and 3350 Oe, respectively. The application of composite films in magnetic recording and electromagnetic absorption fields is promising.  相似文献   

5.
Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li0.5Fe2.5O4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.  相似文献   

6.
Co0.5Zn0.5Fe2O4 nanoparticles were prepared using mechanical alloying (MA) and sintering. The crystallite size, coercivity, retentivity and saturation magnetization were also measured. The frequency dependence of dielectric and the magnetic parameters, namely, real permittivity ε′, loss tanget tan δ, real permeability μ′ and loss factor μ″ were measured at room temperature for samples sintered from 600 to 1000 °C, in the frequency range 10 MHz to 1.0 GHz. The results show that the crystallite size of the resulting products ranges between 16 and 67 nm for as-milled sample and the sample sintered at 1000 °C, respectively. The sample sintered at 1000 °C, measured at room temperature exhibited a saturation magnetization of 37 emu g−1. The values of permittivity remain constant within the measured frequency, but vary with sintering temperature. The permeability values, on the other hand however vary with both the sintering temperature and the frequency, thus, the absolute value of the permeability decreased after the natural resonance frequency.  相似文献   

7.
The combined influence of a two-step sintering (TSS) process and addition of V2O5 on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V2O5 additive, the sample sintered by the two-step sintering process at a high temperature of 1250 °C for 30 min and a lower temperature of 1180 °C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.  相似文献   

8.
We report a new synthesis route for preparation of single-domain barium hexaferrite (BaFe12O19) particles with high saturation magnetization. Nitric acid, known as a good oxidizer, is used as a mixing medium during the synthesis. It is shown that formation of BaFe12O19 phase starts at 800 °C, which is considerably lower than the typical ceramic process and develops with increasing temperature. Both magnetization measurements and scanning electron microscope micrographs reveal that the particles are single domain up to 1000 °C at which the highest coercive field of 3.6 kOe was obtained. The best saturation magnetization of ≈60 emu/g at 1.5 T was achieved by sintering for 2 h at 1200 °C. Annealing at temperatures higher than 1000 °C increased the saturation magnetization, on the other hand, decreased the coercive field which was due to the formation of multi-domain particles with larger grain sizes. It is shown that the best sintering to obtain fine particles of BaFe12O19 occurs at temperatures 900-1000 °C. Finally, magnetic interactions between the hard BaFe12O19 phase and impurity phases were investigated using the Stoner-Wohlfarth model.  相似文献   

9.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

10.
Nanoparticle-sized Co0.2Ni0.3Zn0.5Fe2O4 was prepared using mechanical alloying and sintering. The starting raw materials were milled in air and subsequently sintered at various temperatures from 600 to 1300 °C. The effects of sintering temperature on physical, magnetic and electrical characteristics were studied. The complex permittivity and permeability were investigated in the frequency range 10 MHz to 1.0 GHz. The results show that single phase Co0.2Ni0.3Zn0.5Fe2O4 could not be formed during milling alone and therefore requires sintering. The crystallization of the ferrite sample increases with increasing sintering temperature; which decrease the porosity and increase the density, crystallite size and the shrinkage of the material. The maximum magnetization value of 83.1 emu/g was obtained for a sample sintered at 1200 °C, while both the retentivity and the coercivity decrease with increasing the sintering temperature. The permeability values vary with both the sintering temperature and the frequency and the absolute value of the permeability decreased after the natural resonance frequency. The real part of the permittivity was constant within the measured frequency, while the loss tangent values decreased gradually with increasing frequency.  相似文献   

11.
MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by the conventional ceramic technique. Toroidal cores were sintered at 1350 °C for 4 h in N2/O2 atmosphere with 4% oxygen. Then the influence of Ta2O5 addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites was investigated by characterizing the fracture surface micrograph and measuring the magnetic properties over a temperature ranging from 25 to 120 °C. The results show that, when the Ta2O5 concentration is not more than 0.04wt%, the grain size has a slight increase with the increase of Ta2O5 concentration, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to lower temperature. However, excessive Ta2O5 concentration (>0.04wt%) results in the exaggerated grain growth and porosity increase, which make the initial permeability and saturation magnetic flux density decrease and the power loss increase at room temperature. Furthermore, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to about 100 °C.  相似文献   

12.
NiCuZn ferrites with different contents of CaO-B2O3-SiO2 glasses were synthesized by a conventional ceramic technology and sintered at 1050 °C. It was found that the addition of CaO-B2O3-SiO2 influenced the magnetic and dielectric properties of the ferrites. The saturation magnetization increased at first and reached its maximum with the sample of 2 wt% CaO-B2O3-SiO2, and then decreased. The initial permeability decreased with the content of CaO-B2O3-SiO2 but the cut-off frequency increased. The quality factor decreased first and then increased; the maximum quality factor was obtained in the sample with 3 wt% CaO-B2O3-SiO2. With increasing content of CaO-B2O3-SiO2, the permittivity increased sharply. The possible reasons responsible for these changes are explained.  相似文献   

13.
In the present study, nanoferrite of composition Mn0.4Zn0.6In0.5Fe1.5O4 has been synthesized by co-precipitation method. Decomposition of residue at a temperature as low as 200 °C gives the ferrite powder. The ferrite has been, finally, sintered at 500 °C. The structural studies have been made by using X-ray diffraction (XRD) technique and scanning electron microscopy (SEM), which confirm the formation of single spinel phase and nanostructure. The dc resistivity is studied as a function of temperature and values found are more than twice those for the samples prepared by the other chemical methods. It is found that the resistivity decreases with increase in temperature. The initial permeability value is found to be higher as compared to the other chemical routes. The initial permeability value is found to increase with increase in temperature. At a certain temperature called Curie temperature, it attains a maximum value, after which the initial permeability decreases sharply. Even at nanolevel, appreciable value of initial permeability is obtained and low magnetic losses make these ferrites especially suitable for high-frequency applications. The particle size is calculated using Scherrer's equation for Lorentzian peak, which comes out between 35 and 49 nm. Possible mechanisms contributing to these processes have been discussed.  相似文献   

14.
The composition effects on the dielectric and magnetic properties of NiCuZn-BaTiO3 composites fired at low temperature were investigated. The coexistence of perovskite BaTiO3 and spinel ferrite phases in the composites were observed; no significant chemical reactions occurred between BaTiO3 and NiCuZn ceramics during sintering. The nanosized BaTiO3 powders favored a decrease in grain size. The saturation magnetization, remanent magnetization and real permeability continuously decreased with increasing BaTiO3 content. And the real permittivity continuously increased with the BaTiO3 content. The Q-factor (quality factor) exhibited relatively high values with 20-30 wt% BaTiO3. All composite materials exhibited a low dielectric loss below 100 MHz. Synthetically considerations, the composites with 20-30 wt% BaTiO3 could obtain relatively high real permeability and real permittivity values, and the magnetic and dielectric losses were relatively low, so they were the best candidates to produce LC-integrated chip elements.  相似文献   

15.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

16.
Structural, electrical, and magnetic properties of Ni1−xZnxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures have been investigated thoroughly. The bulk density of the Ni0.8Zn0.2Fe2O4 samples increases as the sintering temperature (Ts) increases from 1200 to 1300 °C and above 1300 °C the bulk density decreases slightly. The Ni0.6Zn0.4Fe2O4 samples show similar behavior of changes to that of Ni0.8Zn0.2Fe2O4 samples, except that the bulk density is found to be the highest at 1350 °C. The DC electrical resistivity, ρ(T)ρ(T), decreases as the temperature increases indicating that the samples have semiconductor-like behavior. As the Zn content increases, the Curie temperature (Tc), resistivity, and the activation energy decrease while the magnetization, initial permeability, and the relative quality factor (Q) increases. A Hopkinson peak is obtained near Tc in the real part of the initial permeability vs. temperature curves. The ferrite with higher permeability has a relatively lower resonance frequency. The initial permeability and magnetization of the samples has been found to correlate with density, average grain sizes. Possible explanation for the observed structural, magnetic, and changes of resistivity behavior with various Zn content are discussed.  相似文献   

17.
李颉  张怀武  李元勋  刘颖力  马岩冰 《中国物理 B》2012,21(1):17501-017501
In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.  相似文献   

18.
Co2Z hexaferrite Ba3Co2Fe24O41 was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 °C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 °C and the Y-type ferrite at 1230 °C. The Z-type material has its stability interval between 1300 and 1350 °C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 °C, intermediate grinding and sintering at 1330 °C. The permeability of Co2Z-type ferrite of about μ=20 is stable up to several 100 MHz, with maximum losses μ′′ around 700 MHz. Addition of 3 wt% Bi2O3 as sintering aid shifts the temperature of maximum shrinkage down to 950 °C and enables sintering of Z-type ferrite powders at 950 °C. However, the permeability is reduced to μ=3. It is shown here for the first time that Co2Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co2Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 °C.  相似文献   

19.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

20.
The structural and magnetic properties of Mn substituted Ni0.50−xMnxZn0.50Fe2O4 (where x=0.00, 0.10 and 0.20) sintered at various temperatures have been investigated thoroughly. The lattice parameter, average grain size and initial permeability increase with Mn substitution. Both bulk density and initial permeability increase with increasing sintering temperature from 1250 to 1300 °C and above 1300 °C they decrease. The Ni0.30Mn0.20Zn0.50Fe2O4 sintered at 1300 °C shows the highest relative quality factor and highest initial permeability among the studied samples. The initial permeability strongly depends on average grain size and intragranular porosity. From the magnetization as a function of applied magnetic field, M(H), it is clear that at room temperature all samples are in ferrimagnetic state. The number of Bohr magneton, n(μB), and Neel temperature, TN, decrease with increasing Mn substitution. It is found that Mn substitution in Ni0.50−xMnxZn0.50Fe2O4 (where x=0.20) decreases the Neel temperature by 25% but increases the initial permeability by 76%. Possible explanation for the observed characteristics of microstructure, initial permeability, DC magnetization and Neel temperature of the studied samples are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号