首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the magnetic properties of two kinds of magnetosomes (25-42 nm) produced by the magneto-tactic bacterium Magnetospirillum gryphiswaldense. At temperatures between 4.2 K and room temperature the temperature dependent magnetorelaxation (TMRX) method was used. We found three areas with magnetic signals and discuss them in this paper using the results of additional hysteresis loop measurements. The signals detected above 300 K show the lower end of a beginning energy barrier distribution. The signals between 70 and 120 K lie in the area of the Verwey transition and disappear over time due to aging processes. In addition to these signals, other signals at temperatures between 4.2 and 70 K were found and possible causes are discussed.  相似文献   

2.
We measured temperature dependence of a spin polarization of field-emitted electrons from a single-crystalline magnetite (Fe3O4) whisker with 〈1 1 0〉 orientation. The spin polarization of emitted electrons began to increase above 130 K corresponding to the temperature of Verwey point (Tv). The increase is considered as reflection of the change of the spin state near the Fermi level due to the Verwey transition. Our experimental results support a localization of t2g orbital electrons below the Verwey point and a model of charge ordering for magnetite.  相似文献   

3.
Mössbauer spectroscopy was used in this study to investigate magnetite nanoparticles, obtained by spray pyrolysis and thermal treatment under H2 reduction atmosphere. Room temperature XRD data indicate the formation of magnetite phase and a second phase (metallic iron) which amount increases as the time of reduction under H2 is increased. While room temperature Mössbauer data confirm the formation of the cubic phase of magnetite and the occurrence of metallic iron phase, the more complex features of 77 K-Mössbauer spectra suggest the occurrence of electronic localization favored by the different crystalline phase of magnetite at low temperatures which transition to the lower symmetry structure should occur at T ~120 K (Verwey transition).  相似文献   

4.
We report experimental evidence for the charge-orbital ordering in magnetite below the Verwey transition temperature T(V). Measurements of O K-edge resonant x-ray scattering on magnetite reveal that the O 2p states in the vicinity of the Fermi level exhibit a charge-orbital ordering along the c axis with a spatial periodicity of the doubled lattice parameter of the undistorted cubic phase. Such a charge-orbital ordering vanishes abruptly above T(V) and exhibits a thermal hysteresis, correlating closely with the Verwey transition in magnetite.  相似文献   

5.
In order to probe the magnetic ground state, we have carried out temperature-dependent magnetic Compton scattering experiments on an oriented single crystal of magnetite (Fe3O4), together with the corresponding first-principles band theory computations to gain insight into the measurements. An accurate value of the magnetic moment μS associated with unpaired spins is obtained directly over the temperature range of 10-300 K. μS is found to be non-integral and to display an anomalous behavior with the direction of the external magnetic field near the Verwey transition. These results reveal how the magnetic properties enter the Verwey energy scale via spin-orbit coupling and the geometrical frustration of the spinel structure, even though the Curie temperature of magnetite is in excess of 800 K. The anisotropy of the magnetic Compton profiles increases through the Verwey temperature Tv and indicates that magnetic electrons in the ground state of magnetite become delocalized on Fe B-sites above Tv.  相似文献   

6.
The Verwey transition in magnetite thin films has been investigated by measuring the temperature dependence of the sheet resistivity. Substrate-induced stresses raise the transition temperature above the 119.4°K reported for bulk magnetite. The ratio of the resistances of the two phases at the transition temperature is independent of the substrate and proportional to the thickness of the sample, suggesting that a 600–1200 Å surface layer remains in the high conductivity phase at all temperatures.  相似文献   

7.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC) whereby charge-density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse spinel phase. The CC-transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure, the CC-transition temperature increases with pressure, reaching 350 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

8.
The spin reorientation temperature T(SR) of stoichiometric Fe(3)O(4), as well as of magnetite with a small number of vacancies and magnetite containing a low concentration of Ti, Zn, Al and Ga was measured on single-crystal samples using the ac susceptibility. In the same experiment the temperature T(V) of the Verwey transition was also found. The results show that a correlation between T(SR) and T(V) exists. The electronic structure of the compounds studied was determined using the density-functional-based GGA + U method. For stoichiometric magnetite the first and second cubic anisotropy constants were calculated, while for magnetite with defects the distribution of electron density using the 'atoms in molecules' approach was determined. Based on a combination of experimental results with the electronic structure calculations an explanation of the temperature dependence of the magnetocrystalline anisotropy of magnetite is suggested.  相似文献   

9.
Temperature-dependent 57Fe Mössbauer spectroscopy to 40 GPa shows that Fe3O4 magnetite undergoes a coordination crossover (CC), whereby charge density is shifted from octahedral to tetrahedral sites and the spinel structure thus changes from inverse to normal with increasing pressure and decreasing temperature. A precursor to the CC is a d-charge decoupling within the octahedral sites at the inverse-spinel phase. The CC transition takes place almost exactly at the Verwey transition temperature (TV=122 K) at ambient pressure. While TV decreases with pressure the CC-transition temperature increases with pressure, reaching 300 K at 10 GPa. The d electron localization mechanism proposed by Verwey and later by Mott for T<TV is shown to be unrelated to the actual mechanism of the metal–insulator transition attributed to the Verwey transition. It is proposed that a first-order phase transition taking place at ∼TV at ambient pressure opens a small gap within the oxygen p-band, resulting in the observed insulating state at T>TV.  相似文献   

10.
In low fields, the magnetization of magnetotactic bacteria (MTB) culture is affected by chemotaxis and can be described by the Langevin function which depends on magnetic field strength and chemotaxis energy. In moderate fields, bacteria magnetization switching occurs as the second-order phase transition induced by increasing the field applied opposite the MTB magnetic moments. For bacteria containing one or two chains of magnetosomes we calculated the switching field as a function of the gap between magnetic particles.  相似文献   

11.
Nanoparticles of magnetite Fe3O4 were synthesized by thermal reduction of hematite α-Fe2O3 powder in the presence of high boiling point solvent. The structural transformations and magnetic properties of the obtained nanoparticles were investigated by the 57Fe Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements. The content of hematite and magnetite phases was evaluated at each step of the chemical and thermal treatment of the product. An increase of saturation magnetization with the reaction time correlates with an increase of concentration of magnetite in the samples. The electron hoping between Fe2?+? and Fe3?+? ions in the octahedral sites of the magnetite nanoparticles and Verwey phase transition were investigated. It was established that not all iron ions in the octahedral sites participated in electron hoping Fe2?+????Fe3?+? above the Verwey temperature T V, and the charge distribution could be expressed as $\big( {{\rm Fe}^{3+}}\big)_{{\rm tet}} \big[ {{\rm Fe}_{1.85}^{2.5+} {\rm Fe}_{0.15}^{3+} }\big]_{{\rm oct}} {\rm O}_4$ .  相似文献   

12.
Mature radula pieces from the chitonAcanthopleura hirtosa were studied using Mössbauer spectroscopy. The magnetite present in the radulae was found to have a distribution of Verwey transition temperatures in the range 85–100K. It was deduced that the magnetite was non-stoichiometric with an average formula Fe2.98O3. About 10% of the Fe in the radulae was in the form of maghemite and about 19% was in the form of paramagnetic or superparamagnetic phases.  相似文献   

13.
A neutron diffraction study of magnetite below the Verwey transition (123 K) reveals that the superlattice reflections are observed for (hhl), with l = integers +12 but not for (hhl). This determines a (110) glide plane in the direction of [100] and implies that only one of the doubly degenerate modes, proposed recently by Yamada, condenses at the transition.  相似文献   

14.
The isotope and pressure effects on the Verwey temperature of magnetite have been explained with the assumption that the transition is due to the condensation of an active phonon mode which is responsible for its transport properties in the high-temperature phase.  相似文献   

15.
Local density approximation + Hubbard U (LDA + U) band structure calculations reveal that magnetite (Fe3O4) forms an insulating charge-orbital-ordered state below the Verwey transition temperature. The calculated charge ordering is in good agreement with that inferred from recent experiments. We found an associated t(2g) orbital ordering on the octahedral Fe2+ sublattice. Such an orbital ordering results primarily from the on-site Coulomb interaction. This finding unravels such fundamental issues about the Verwey transition as the mechanism for the charge ordering and for the formation of the insulating gap, as well as the nonobedience of the Anderson's criterion for the charge ordering.  相似文献   

16.
Four samples of Fe3O4 microcrystals with average particle size of 72, 88, 100, 100Å have been investigated by Mössbauer spectroscopy, accompanied with x-ray diffraction and transmission electron microscopy. The experimental results show that the anisotropy energy constantK increases as the particle size decreases. It is found that a sudden drop ofK exists around Verwey transition temperatureT v andK remains constant in temperature well aboveT v . The Verwey temperatureT v for Fe3O4 microcrystals with different particle size is almost the same as that of bulk magnetite.  相似文献   

17.
We have prepared nearly monodisperse Fe3O4 of ∼50 nm by a chemical route and investigated the electrical and magnetic transports of the composite granular system. A Verwey transition is observed in the vicinity of 113 K. Above and below the Verwey transition, the electrical transport is dominated by electron hopping behavior showing a good linear relation between resistance and T−1/2. The magnetoresistance (MR) increases with the applied field and does not follow the magnetization to reach the saturation at 10 KOe field. This indicates that the MR is mainly arising from the spin-dependent scattering of electrons through the grain boundaries. The temperature dependence of MR shows it has the highest MR value near the Verwey transition.  相似文献   

18.
Micromagnetic simulations have been used to explore the interaction between ferrimagnetic domain walls (DWs) and ferroelastic twin walls (TWs) below the Verwey transition in magnetite (Fe3O4). Simulations were performed using a thin-foil geometry in order to replicate the domain patterns observed experimentally using transmission electron microscopy. The magnetic microstructure is shown to be highly sensitive to the physical dimensions and crystallographic orientation of the foil, the spatial distribution and crystallographic classification of the TWs and the temperature/field history of the sample. A method to calculate the phase shift of a beam of electrons passing through the micromagnetic simulations is applied. The resulting phase maps provide a robust interpretation of experimental images obtained using Fresnel-mode Lorentz microscopy and off-axis electron holography. The interaction between ferrimagnetic and ferroelastic DWs during field cycling provides an explanation for the low-temperature ‘field-memory effect’ in magnetite.  相似文献   

19.
We investigated electrical- and magneto-resistance control in magnetite (Fe3O4) nanoparticle sinter (MNPS) by the regulation of heat treatment (HT) temperature. MNPS was produced from hematite (α-Fe2O3) nanoparticles (HNP’s) using a deoxidization reaction. The average size of HNP was 30 nm, and HT was carried out between 400 and 800 °C. X-ray diffraction, magnetization, electrical resistivity (ER), and magneto-resistivity (MR) measurements were performed at temperatures ranging from 5 to 300 K. The ER and MR behaviors were considerably different at HT temperatures above and below ∼600 °C. After HT below ∼600 °C, ER followed the Mott-type variable-range-hopping conduction, and MR showed large values over a wide temperature range. After HT above ∼600 °C, ER indicated a Verwey transition near 110 K and MR showed small values, except in the vicinity of the Verwey transition temperature. Changing the HT temperature altered the coupling between adjacent magnetite nanoparticles (MNPs) and affected the crystallinity of MNPS. Below ∼600 °C, ER and MR were dominated by grain-boundary conduction, while above ∼600 °C they were determined by inter-grain conduction. The application of a magnetic field to the grain-boundary region, which had random localized spins, caused a large enhancement in MR.  相似文献   

20.
We have investigated the charge ordering (CO) in magnetite below the Verwey transition. A new set of half-integer and mixed-integer superlattice reflections of the low-temperature phase have been studied by x-ray resonant scattering. None of these reflections show features characteristic of CO. We demonstrate the absence of CO along the c axis with the periodicity of either the cubic lattice q=(001) or the doubled cubic lattice q=(001/2). This result suggests that the Verwey transition is caused by strong electron-phonon interaction instead of an electronic ordering on the octahedral Fe atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号