首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stationary states of the kinetic spin-1 Blume-Capel (BC) model on the Bethe lattice are analyzed in detail in terms of recursion relations. The model is described using a Glauber-type stochastic dynamics in the presence of a time-dependent oscillating external magnetic field (h) and crystal field (D) interactions. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. It is found that the magnetization oscillates around nonzero values at low temperatures (T) for the ferromagnetic (F) phase while it only oscillates around zero values at high temperatures for the paramagnetic (P) phase. There are regions of the phase space where the two solutions coexist. The dynamic phase diagrams are obtained on the (kT/J,h/J) and (kT/J,D/J) planes for the coordination number q=4. In addition to second-order and first-order phase transitions, dynamical tricritical points and triple points are also observed.  相似文献   

2.
The alternating-bond mixed spin-1/2 and spin-1 Ising chain with both longitudinal and transverse single-ion anisotropies are solved exactly by means of a mapping of the spin-1/2 transverse Ising chain and the Jordan-Wigner transformation. The ground state quantities are strongly dependent on the model Hamiltonian parameters J1, J2, Dx and Dz. We obtain the quasi-particles' spectra Λk, the dimerization gap Δd, the minimal energy Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole and the ground state energy Eg. The phase diagram of the ground state is also given. The results show that the alternating bond just quantitatively changes the ground state properties; no matter the nearest-neighbor exchange interactions J1 and J2 are equal or not, when Dz≥0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase.  相似文献   

3.
Erhan Albayrak  Ali Yigit  Tunc Cengiz 《Physica A》2010,389(13):2522-2532
The temperature-dependent phase diagrams of the spin-3/2 Ising model on a two-layer Bethe lattice with ferromagnetic (FM)/antiferromagnetic (AFM) intra-layer and either FM or AFM type inter-layer interactions are investigated under a constant magnetic field (H) and in the presence of a crystal field (D) by using exact recursion equations in a pairwise approach for coordination numbers q=3,4 and 6, in detail. In the light of the ground-state (GS) phase diagrams, the temperature-dependent phase diagrams of the model are obtained by studying the thermal variations of the order parameters, response functions and free energy. Then, they are illustrated on the (kT/J1,J3/J1) and (kT/J1,J2/J1) planes for the given system parameters. It is observed that the system exhibits first- and second-order phase transitions for all q values, and hence, in some cases, tricritical points. The existence of critical-end points and that of isolated points are also observed. The re-entrant behavior owes its presence to the two Néel temperatures, TN, that are present for all q.  相似文献   

4.
Bayram Deviren  Mehmet Erta? 《Physica A》2010,389(10):2036-2047
An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the (Δ/|J|, kBT/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.  相似文献   

5.
The phase diagrams of the transverse spin-1 Ising model with random interactions are investigated using a new technique in the effective field theory that employs a probability distribution within the framework of the single-site cluster theory based on the use of exact Ising spin identities. A model is adopted in which the nearest-neighbor exchange couplings are independent random variables distributed according to the law P(Jij)=(JijJ)+(1−p)δ(JijαJ). General formulae, applicable to lattices with coordination number N, are given. Numerical results are presented for a simple cubic lattice. The possible reentrant phenomenon displayed by the system due to the competitive effects between exchange interactions occurs for the appropriate range of the parameter α.  相似文献   

6.
《Physics letters. A》2001,291(6):417-423
One-dimensional quantum spin-1 antiferromagnetic Heisenberg chain (AFHC) with exchange anisotropy Jz, dimerization δ and single-ion anisotropy Dn(Snz)2 was investigated on the basis of the continuum representation of the model Hamiltonian. Analytical results for the excitation spectrum, phase order and the phase fluctuation φ were derived in a self-consistent-harmonic-field approach. We studied the effects of the single-ion anisotropy and dimerization on two gaps by taking the different momentum cutoff αi in two scalar field spaces Hi (i=1,2). The occurrences of richer phase transitions were understood in the viewpoints of the phase fluctuation and the z polar spin fluctuation. And the Gaussian critical line was given as JzDπα1δ=0.  相似文献   

7.
A two-fold Cayley tree graph with fully q-coordinated sites is constructed and the spin-1 Ising Blume-Emery-Griffiths model on the constructed graph is solved exactly using the exact recursion equations for the coordination number q = 3. The exact phase diagrams in (kT/J, K/J ) and (kT/J, D/J) planes are obtained for various values of constants D/J and K/J, respectively, and the tricritical behavior is found. It is observed that when the negative biquadratic exchange (K) and the positive crystal-field (D) interactions are large enough, the tricritical point disappears in the (kT/J, K/J) plane. On the other hand, the system always exhibits a tricritical behavior in the phase diagram of (kT/J, D/J) plane. Received 8 June 2001 and Received in final form 28 September 2001  相似文献   

8.
We use exact recursion relations to study the magnetic properties of the half-integer mixed spin-5/2 and spin-3/2 Blume-Capel Ising ferromagnetic system on the two-fold Cayley tree that consists of two sublattices A and B. Two positive crystal-field interactions Δ1 and Δ2 are considered for the sublattice with spin-5/2 and spin-3/2 respectively. For different coordination numbers q of the Cayley tree sites, the phase diagrams of the model are presented with a special emphasis on the case q = 3, since other values of q reproduce similar results. First, the T = 0 phase diagram is illustrated in the (D A = Δ1/J,D B = Δ2/J) plane of reduced crystal-field interactions. This diagram shows triple points and coexistence lines between thermodynamically stable phases. Secondly, the thermal variation of the magnetization belonging to each sublattice for some coordination numbers q are investigated as well as the Helmoltz free energy of the system. First-order and second-order phase transitions are found. The second-order phase transitions become sharper and sharper when D A or D B increases. The first-order transitions only exist for some appropriate non-zero values of D A and/or D B . The corresponding transition lines never connect to the second-order transition lines. Thus, the non-existence of tricritical points remains one of the key features of the present model. The magnetic exponent β 0 of the model is estimated and found to be ¼ at small values of D A = D B = D and β 0 = ½ at large values of D. At intermediate values of D, there is a crossover region where the magnetic exponent displays interesting behaviours.  相似文献   

9.
Bayram Deviren  Osman Canko 《Physica A》2009,388(9):1835-1848
The magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model with a crystal field in a longitudinal magnetic field on the honeycomb (z=3) and square lattice (z=4) are studied by using the effective-field theory with correlations. The ground state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice and total magnetizations, and present the phase diagrams in the (Δ/|J|, ) plane. The phase diagrams have one, two or even three compensation temperatures depending on the values of the crystal-field interaction. Moreover, the susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field.  相似文献   

10.
Haina Wu  Guangyu Yi 《Physics letters. A》2008,372(43):6531-6535
The mixed spin-1/2 and spin-1 Ising chain with both longitude and transverse single-ion anisotropies Dz and Dx is solved exactly by means of a mapping to the spin-1/2 Ising chain with the alternating transverse fields and the Jordan-Wigner transformation. The analytical expressions of the quasi-particles' spectra Λk, the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole, and the ground state energy are obtained. The phase diagram of the ground state is also given. The results show that when Dz?0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase disregard of the boundary condition in the present system.  相似文献   

11.
《Physica A》1996,231(4):673-686
The equilibrium properties of the spin-1 Ising system Hamiltonian with arbitrary bilinear (J), biquadratic (K) and odd (L), which is also called dipolar-quadrupolar, interactions is studied for zero magnetic field in the lowest approximation of the cluster variation method. The odd interaction is combined with the bilinear (dipolar) and biquadratic (quadrupolar) exchange interactions by the geometric mean. In this system, phase transitions depend on the ratio of the coupling parameters, α = J/K; therefore, the dependence of the nature of the phase transition on α is investigated extensively and it is found that for α ⩽ 1 and α ⩾ 2000 a second-order phase transition occurs, and for 1 < α < 2000 a first-order phase transition occurs. The critical temperatures in the case of a second-order phase transition and the upper and lower limits of stability temperature in the case of a first-order phase transition are obtained for different values of α calculated using the Hessian determinant. The first-order phase transition temperatures are found by using the free energy values while increasing and decreasing the temperature. Besides the stable branches of the order parameters, we establish also the metastable and unstable parts of these curves and the thermal variations of these solutions as a function of the reduced temperature are investigated. The unstable solutions for the first-order phase transitions are obtained by displaying the free energy surfaces in the form of a contour map. Results are compared with the spin-1 Ising system Hamiltonian with the bilinear and biquadratic interactions and it is found that the odd interaction greatly influences the phase transitions.  相似文献   

12.
Phase transition properties of a spin-1 Blume-Emery-Griffiths model (BEGM) with random transverse crystal field is studied by the effective field theory for a simple cubic lattice. In TDx space, we obtain the phase diagrams with the ratio α between the biquadratic interaction and the exchange interaction as well as a tunable parameter l of the transverse crystal field. The tricritical point (TCP) appears at α<0, which undergoes a crossover from positive to negative direction of the transverse crystal field when l<0. The TCP cannot be observed for α>0. The maximum critical temperature increases with the increase of α. The position of the peak value tends to the drift of negative or positive direction for a different magnitude or an imperfect (±) transverse crystal field distribution. In Tα space, the range of ordered phase is magnified when the ratio is changed from α<0 to α>0. The random transverse crystal field obviously affects the TCP.  相似文献   

13.
Proton spin-lattice relaxation times as a function of temperature for two kinds of binuclear copper complexes with antiferromagnetic exchange interactionJS1S2 have been measured in order to understand the relaxation effects in exchange clusters. It is shown that the results reflect the coupling of the nuclear and electron subsystems; in the rangekT<J the coupling of the subsystems is modulated by temperature independent processes, in the rangekTJ the temperature dependence of the dynamics of the electron subsystem is manifested. The response of the nuclear subsystem to the change in the nature of magnetic excitations is discovered.  相似文献   

14.
Within the effective field theory (EFT), the critical properties of the biaxial Ising model with both longitudinal crystal field and transverse dilution crystal field are investigated for a simple cubic lattice. The tricritical point (TCP) and its trajectory are discussed in T-Dx and T-Dz space. A new phenomenon of two TCPs is found in T-Dx space. There exists a second-order line between two first-order lines, separated by two TCPs. The change of dilution concentration leads to a complex relation of the trajectory of the TCP. The degenerate patterns at the ground state appear by changing the longitudinal crystal field. The range of the ordered phase for transition lines labelled as a positive or (negative) value of Dx/J becomes larger or (smaller) with the decrease of tx in T-Dz space. Some results have not been revealed in previous works.  相似文献   

15.
We give an exact formulation of a mixed spin-1 and spin-3/2 Ising model on the Bethe lattice, which shows ferrimagnetism and compensation points. The model incorporates antiferromagnetic nearest-neighbor interaction which is relevant to describe ferrimagnetism. The influence of two sublattice crystal fields, DA and DB, on compensation points is studied in detail. For certain crystal-field values, the single or double compensation temperature may occur in the present system.  相似文献   

16.
It is well known that spin nematic phases can appear in either frustrated magnets or in those described by Hamiltonians with large exotic non-Heisenberg terms like biquadratic exchange. We show in the present study that non-frustrated spin-1 1D, 2D, and 3D antiferromagnets with single-ion easy-axis anisotropy can show nematic phases in strong magnetic field. For 1D case we support our analytical results by numerical ones.  相似文献   

17.
Erhan Albayrak 《Physica A》2011,390(9):1529-1533
The dependence of the phase diagrams on the random crystal field (RCF) is investigated for the spin-1 Blume-Capel (BC) model on the Bethe lattice. The calculations are carried out in terms of the recursion relations for the coordination number z=4 which corresponds to the square lattice. The model presents tricritical points which are observed at lower negative crystal fields and higher temperatures for higher probabilities p and which vanish at lower p’s. The effect of randomness is illustrated for p=0.5 and shown that it changes the phase diagrams drastically from random to non-random systems. The reentrant behavior is also observed for appropriate p values.  相似文献   

18.
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h0/zJ) and (T/zJ, D/zJ), where T absolute temperature, h0, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z).  相似文献   

19.
Two layered magnetic Bethe lattice with varying coordination number q is introduced and numerically studied via exact recursion relations within a pairwise approach. The system is influenced by competing interlayer and intralayer nearest-neighbour (NN) coupling interactions and also by the crystal and external magnetic fields. Cases where both layers are ferromagnetic or one is ferro and the other antiferromagnetic are considered. System configurations’ energy calculations are used to devise some ground state phase diagrams that have proven useful for the investigation of the very low temperature behaviour of the model. Analysis of the thermal behaviours of the total magnetization within the model parameters’ space yield interesting phase diagrams which display fascinating properties, in particular the presence of tricritical points. Increasing negative values of the crystal field strength stabilizes the disordered paramagnetic phase and sometimes gives rise to wavy transition lines.  相似文献   

20.
The mixed spin-1 and spin- \frac52\frac{5}{2} ferromagnetic Ising model with bilinear (J) and biquadratic (K) nearest-neighbor exchange interactions and a single-ion potential or crystal-field interaction (D) is studied on the Bethe lattice by means of exact recursion equations. First, the phase diagram of the system at zero temperature is obtained in the (D/Jq, K/Jq) plane, where q denotes the coordination number of the lattice. Second, the sublattice magnetizations as functions of the temperature, the crystal-field and the biquadratic interaction strengths are thoroughly investigated. For q = 3, the resulting phase diagrams show first and second order phase transitions as well as compensation points where the net magnetization of the whole lattice should vanish in the antiferromagnetic version of the model. One interesting feature of the model concerns the presence of tricritical points. Our calculations show that at non-zero temperature, none of the sublattice can order separately. However, under an external magnetic field, some interesting phase diagrams with partially ordered phases arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号