首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Sintering temperature and particle size dependent structural and magnetic properties of lithium ferrite (Li0.5Fe2.5O4) were synthesized and sintered at four different temperatures ranging from 875 to 1475 K in the step of 200 K. The sample sintered at 875 K was also treated for four different sintering times ranging from 4 to 16 h. Samples sintered at 1475 K have the cubic spinel structure with a small amount of α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). The samples sintered at≤1275 K do not show hematite and maghemite phases and the crystals form the single phase spinel structure with the cation ordering on octahedral sites. Particle size of lithium ferrite is in the range of 13-45 nm, and is depend on the sintering temperature and sintering time. The saturation magnetization increased from 45 to 76 emu/g and coercivity decreases from 151 to 139 Oe with an increase in particle size. Magnetization temperature curve recorded in ZFC and FC modes in an external magnetic field of 100 Oe. Typical blocking effects are observed below about 244 K. The dielectric constant increases with an increase in sintering temperature and particle size.  相似文献   

2.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

3.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

4.
Fe3O4 nanoparticle/organic hybrids were synthesized via hydrolysis using iron (III) acetylacetonate at ∼80 °C. The synthesis of Fe3O4 was confirmed by X-ray diffraction, selected-area diffraction, and X-ray photoelectron spectroscopy. Fe3O4 nanoparticles in the organic matrix had diameters ranging from 7 to 13 nm depending on the conditions of hydrolysis. The saturation magnetization of the hybrid increased with an increase in the particle size. When the hybrid contained Fe3O4 particles with a size of less than 10 nm, it exhibited superparamagnetic behavior. The blocking temperature of the hybrid containing Fe3O4 particles with a size of 7.3 nm was 200 K, and it increased to 310 K as the particle size increased to 9.1 nm. A hybrid containing Fe3O4 particles of size greater than 10 nm was ferrimagnetic, and underwent Verwey transition at 130 K. Under a magnetic field, a suspension of the hybrid in silicone oil revealed the magnetorheological effect. The yield stress of the fluid was dependent on the saturation magnetization of Fe3O4 nanoparticles in the hybrid, the strength of the magnetic field, and the amount of the hybrid.  相似文献   

5.
Bulk Se96Sn4 chalcogenide glass was prepared by melt quenching technique and irradiated by different doses of 4, 8, 12, 24 and 33 kGy using 60Co gamma emitter. I-V characteristics were obtained for this glass, before and after gamma irradiation, in the temperature range 200-300 K. Ohmic behavior was observed at low electric fields (≤1×104 V/m), while at higher fields, a deviation from ohmic towards non-ohmic behavior was observed. The plots of ln(I/V) vs. V were found to be straight lines and the slopes of these lines decrease linearly with temperature indicating the presence of SCLC. In the temperature range of measurements, the dependence of DC conductivity on temperature at low electric field shows two types of conduction channels, one in high temperature range 270-300 K and the other at low temperature range 200-270 K. Analysis of the experimental data shows that the conductivity at room temperature decreases with increase in irradiation dose. This is attributed to rupturing of SnSe4/2 structural units, upon irradiation, and rebuilt of Se atoms between Se chains. This redistribution of bonds, induced by gamma irradiation, is responsible for the corresponding increase in the activation energy. The obtained values of the activation energy indicate that the conduction occurs due to thermally assisted charge carriers movement in the band tail of localized states. However, in the low temperature range, results obtained from Mott’s variable range hopping (VRH) model reveal that the density of localized states has its maximum value at a gamma dose of 12 kGy, while the disorder parameter To, hopping distance Rhop and hopping energy W have their minimum value at this particular dose.  相似文献   

6.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

7.
Thermal stability and crystallization of the Fe81B12Si4C2 alloy were investigated in the temperature range 25-700 °C by the XRD and Mössbauer analysis. It was shown that on heating the as-prepared amorphous Fe81B12Si4C2 alloy undergoes thermal stabilization through a series of structural transformations involving the process of stress-relieving (temperature range 200-400 °C), followed by a loss of ferromagnetic properties (Curie temperature at 420 °C) and finally crystallization (temperature range 450-530 °C). The process of crystallization begins by formation of two crystal phases: Fe3B and subsequently Fe2B, as well as a solid solution α-Fe(Si). With increase in annealing temperature, the completely crystallized alloy involved only two phases, Fe2B and solid solution α-Fe(Si).XRD patterns established a difference in phase composition and size of the formed crystallites during crystallization depending on the side (fishy or shiny) of the ribbon. The first nuclei of the phase α-Fe3Si were found on the shiny side by XRD after heat treatment even at 200 °C but the same phase on the fishy side of ribbon was noticed after heat treatment at 450 °C. The largest difference between the contact and free surface was found for the Fe2B phase crystallized by heating at 700 °C, showing the largest size of crystallites of about 130 nm at 700 °C on the free (shiny) surface.  相似文献   

8.
Nanostructured manganese ferrites (MnFe2O4) with diameters in the range of 45–30 nm were synthesized by Ti4+ ion doping, using conventional solid-state reaction route. The substitution of Ti4+ ions created vacancies at Mn2+ sites and the coupling of ferrimagnetically active oxygen polyhedra was broken. This created nanoscale regions of ferrites. A reduction of magnetization for decreasing particle size was observed. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behaviour of magnetic nanoparticles. DC resistivities of the doped specimens indicated the presence of an interfacial amorphous phase formed by the nanoparticles. Zero-field cooled and field-cooled curves from 30 nm sized particles showed a peak at TB (∼125 K), typical of superparamagnetic blocking temperature.  相似文献   

9.
Temperature-dependent spectral properties in the cubic Y2O3:Tb3+ nanocrystals (NCs, 10-70 nm) under 488 nm excitation were studied and compared to that in the bulk. In NCs, emission lines assigned to the 5D4-7FJ (J=1-6) transitions of Tb3+ ions and a broad band originated from oxygen defects were observed. As a function of temperature, two intensity maximums of the 5D47FJ transitions appeared in the NCs, at ∼250 and ∼500 K, while in the bulk only one maximum appeared at ∼250 K. The relative intensity of the maximum at ∼500 K to that at ∼250 K increased with decreasing particle size. The intensity maximum of the band emissions that came from the oxygen defects appeared in the range of 500-600 K. The appearance of intensity maximum as a function of temperature was attributed to the rivalry between thermal quenching process and phonon-assisted excitation. The appearance of two maxima in the NCs was attributed to the luminescence contributed by different Tb3+ centers, the internal and the surface. The emission for the surface Eu3+ centers has higher quenching temperature in contrast to that for the internal centers.  相似文献   

10.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

11.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

12.
Magnetic nanoparticles of La0.67Sr0.33MnO3 (LSMO) manganite were prepared by sol-gel method. Phase formation and crystal structure of the synthesized powder were examined by the X-ray diffraction (XRD) using the Rietveld analysis. The mean particle size was determined by the transmission electron microscopy (TEM). Infrared transmission spectroscopy revealed that stretching and bending modes are influenced by calcinations temperature. The temperature dependence of the ac magnetic susceptibility was measured at different frequencies and ac magnetic fields in the selected ranges of 40-1000 Hz and 80-800 A/m, respectively. The temperature dependence of ac susceptibility shows a characteristic maxima corresponding to the blocking temperature near room temperature. The frequency dependence of the blocking temperature is well described by the Vogel-Fulcher law. By fitting the experimental data with this law, the relaxation time τ0=1.7×10−12 s, characteristic temperature T0=262±3 K, anisotropy energy Ea/k=684±15 K and effective magnetic anisotropy constant keff=2.25×104 erg/cm3 have been obtained. dc Magnetization measurement versus magnetic field shows that some of LSMO nanoparticles are blocked at 293 K. The role of magnetic interparticle interactions on the magnetic behavior is also investigated.  相似文献   

13.
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K.  相似文献   

14.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

15.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

16.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

17.
Bulk amorphous ferromagnet alloys of composition Nd60Fe30Al10, Nd60Fe20Co10Al10 and Pr58Fe24Al18 have been prepared by argon arc melting and quenching into a copper mould. General insight into the magnetic behaviour of the alloys was gained from measurement of the major hysteresis loop at room temperature, and from zero-field cooled and field-cooled magnetisation measurements in the range 10-400 K. Measurements of the coercivity were made from 10 to 400 K, and for all alloys, the coercivity is seen to increase steeply with decreasing temperature to a peak at a temperature in the range 25-50 K, before decreasing. For all alloys, the temperature dependence of the coercivity between 50 and 400 K is well explained by the strong pinning model of domain walls of Gaunt [Philos. Mag. B 48 (1983) 261]. Quantities deduced from the Gaunt model, along with other relevant magnetic parameters, are used to estimate values for the exchange and anisotropy constants.  相似文献   

18.
Nanocrystalline Co3O4 powders were synthesized by aerosol flame synthesis (AFS) method for the anode of lithium ion batteries and the basic electrochemical properties were investigated. The effects of synthesis conditions and heat-treatment temperature on the morphology, crystallite size and electrochemical properties were investigated. As-prepared soot contained Co3O4, CoO and Co(OH)2, which were eventually converted into cubic spinel Co3O4 by post heat treatment. The as-prepared particle size was in the range of 10-30 nm and grew to 50-85 nm by the heat treatment. With growing particle size and improved crystallinity, charge-discharge capacity and cycle performance were improved and the discharge capacity of the powder heat-treated at 700 °C was 571 mAh/g after 30 cycles, which was better than Co3O4 powder reported in the previous literature.  相似文献   

19.
The temperature dependence of the resistance of composite samples (1−x)La0.67Sr0.33MnO3+xYSZ with different YSZ doping level x was investigated at magnetic fields 0-3 T, where YSZ represents yttria-stabilized zirconia. Results show that the YSZ dopant does not only adjust the metal-insulator transition temperature, but also increases the magnetoresistance effect. With increase of YSZ doping level for the range of x<2%, the metal-insulator transition temperature values TP of the composites decrease, but TP increases with increase of x further for the range of x>2%. Meanwhile, in the YSZ-doped composites, a broad metal-insulator transition temperature region was found at zero and low magnetic field, which results in an obvious enhanced magnetoresistance in the temperature range 10-350 K. Specially, a larger magnetoresistance value was observed at room temperature at 3 T, which is encouraging with regard to the potential application of magnetoresistance materials.  相似文献   

20.
Mn-ferrite nanoparticles having diameter in the range 17-45 nm were synthesized by modified co-precipitation method using metal nitrate solutions. Different concentrations of NaOH were found to affect the growth of particle size. Néel temperature (TN) was found to increase with increasing particle size. The obtained Néel temperature was higher than that of the bulk. The shift in the Néel temperature is described by the finite size-scaling theory [TN(d)−TN(bulk)]/TN(bulk)=(d/d0)−1/v, where d is particle size, v=0.6±0.1 and d0=1.7±0.1 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号