首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid ferromagnetic composites composed of Ni0.4Zn0.6Fe2O4 ferrite powder and Fe particles in an epoxy matrix with various composition ratios were prepared by a simple mould casting route. Planetary ball milling was then introduced to pre-grind Fe and NiZn ferrite filler mixtures before casting, which resulted in fragmentation of the NiZn ferrites and modification of the Fe morphology from spherical particles to sub-micron flakes. Composites containing the ball-milled fillers exhibited a remarkable improvement in electromagnetic properties over the as-supplied materials, especially in the suppression of dielectric and magnetic loss. By combining the characteristics of high resonant frequency of the Fe and low energy losses of the ferrite, an optimum mixture of ball-milled 15 vol% NiZn ferrite and 38 vol% Fe in a hybrid epoxy-based composite gave an approximately one order of magnitude higher extended operating bandwidth over a ferrite-only containing composite, suppressing dielectric and magnetic loss tangents to approximately 10?2 up to 150 MHz without significant deterioration of permeability. This approach of manipulating multi-phase ferromagnetic material fractions and their structure provide for flexibility in the development of bespoke electromagnetic materials for applications in electrically small antenna and metamaterials.  相似文献   

2.
NiZn ferrite films with well-defined spinel crystal structure were in situ fabricated by radio frequency magnetron sputtering at room temperature. The microstructures and static magnetic properties of the films’ dependence on the partial pressure ratio of argon to oxygen gas were investigated. Scanning electron microscope images indicated that all the films consisted of particles nanocrystalline in nature and the sizes increase as the ratio increases in the range of 10-25 nm. A large saturation magnetization (237.2 emu/cm3) and a minimum of coercivity (68 Oe) were obtained when the ferrite film was deposited in the ratio of 4:1. The complex permeability values (μ = μ−iμ″) of the film were measured at frequency up to 5 GHz. It was shown that the film exhibited a large real part of permeability μ′ of 18 and a very high resonance frequency fr of 1.2 GHz. The results suggested that the NiZn ferrite film as-deposited in the ratio of 4:1 may be promised as magnetic medium in the application of integrated circuits operating at microwave frequencies.  相似文献   

3.
In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4×10−5 Sm−1. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.  相似文献   

4.
The combined influence of a two-step sintering (TSS) process and addition of V2O5 on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V2O5 additive, the sample sintered by the two-step sintering process at a high temperature of 1250 °C for 30 min and a lower temperature of 1180 °C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.  相似文献   

5.
Nanocrystalline PZT thick films (1 mm square and over 10 μm thick) directly deposited onto stainless-steel substrates (PZT/SUS) by aerosol deposition (AD) technique and then annealed using focused laser beam with a fiber laser to suppress thermal damage to the back sides of the PZT/SUS and substrate near the film edge and to retain the dielectric and/or ferroelectric properties of the PZT/SUS. Compared with CO2 laser annealing, fiber laser annealing suppressed thermal damage to the substrate. Compared with PZT/SUS annealed at 600 °C using an electric furnace, PZT/SUS annealed at 600 °C using a fiber laser showed superior properties, namely, dielectric constant ? > 1200 at a frequency of 100 Hz, remanent polarization Pr > 30 μC/cm2, and coercive field strength Ec < 50 kV/cm at a frequency of 10 Hz. Furthermore, the grain growth for the PZT/SUS formed by AD technique and annealed by fiber laser irradiation was occurred within the laser spot size.  相似文献   

6.
Magnetic, magnetoelectric and dielectric properties of multiferroic CoFe2O4–Pb(Fe1/2Nb1/2)O3 composites prepared as bulk ceramics were compared with those of tape cast and cofired laminates consisting of alternate ferrite and relaxor layers. X-ray diffraction analysis and Scanning Electron Microscope observations of ceramic samples revealed two-phase composition and fine grained microstructure with uniformly distributed ferrite and relaxor phases. High and broad maxima of dielectric permittivity attributed to dielectric relaxation were found for ceramic samples measured in a temperature range from −55 to 500 °C at frequencies 10 Hz–2 MHz. Magnetic hysteresis, zero-field cooled (ZFC) and field cooled (FC) curves, and dependencies of magnetization on temperature for both magnetoelectric composites were measured with a vibrating sample magnetometer in an applied magnetic field up to 80 kOe at 4–400 K. The hysteresis loops obtained for composites are typical of a mixture of the hard magnetic material with a significant amount of the paramagnet. The bifurcation of ZFC–FC magnetizations observed for both composites implies spin-glass behavior. Magnetoelectric properties at room temperature were investigated as a function of dc magnetic field (0.3–7.2 kOe) and frequency (10 Hz–10 kHz) of ac magnetic field. Both types of composites exhibit a distinct magnetoelectric effect. Maximum values of magnetoelectric coefficient attained for the layered composites exceed 200 mV/(cm Oe) and are almost three times higher than those for particulate composites.  相似文献   

7.
Single crystals of pure and potassium iodide (KI)-doped zinc tris-thiourea sulphate (ZTS) were grown from aqueous solutions by the slow evaporation method. The grown crystals were transparent. The lattice parameters of the grown crystals were determined by the single-crystal X-ray diffraction technique. The grown crystals were also characterized by recording the powder X-ray diffraction pattern and by identifying the diffracting planes. The FT-IR spectrum was recorded in the range 400-4500 cm−1. Second harmonic generation (SHG) was confirmed by the Kurtz powder method. The thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) studies reveal that the materials have good thermal stability. Atomic absorption studies confirm the presence of dopant in ZTS crystals. The electrical measurements were made in the frequency range 102-106 Hz and in the temperature range 40-130 °C along a-, b- and c-directions of the grown crystals. The present study shows that the electrical parameters viz. dc conductivity, dielectric constant, dielectric loss factor and ac conductivity increase with increase in temperature. Activation energy values were also determined for the ac conduction process in grown crystals. The dc conductivity, dielectric constant, dielectric loss factor and ac conductivity of KI-doped ZTS crystal were found to be more than those of pure ZTS crystals.  相似文献   

8.
Sr-hexa ferrites with the addition of Si (0.5 wt%) and Ca (0.5 wt%) have been prepared by solid-state reaction method with sintering time variation ranging from 2 to 10 h. The structural characterization of the samples confirmed the major phase of Sr-hexa ferrite. Average grain size was found within the range of 1–4 μm. Vicker hardness increased from 512 to 1187Hv. The coercivity and remanence had the ranges from 596 to 4255 Oe and 324 to 516 G, respectively. The DC electrical resistivity measurements were carried out by two-probe method as a function of temperature from 303 to 723 K. The room temperature DC resistivity increased from 1.67×106 to 2.89×108 Ω cm in turn the activation energy also increased from 0.314 to 0.495 eV. The DC electrical resistivity decreased while drift mobility increased with the rise in temperature, ensuring the semi-conducting behavior. Dielectric properties were studied as a function of frequency in the range of 80 Hz to 1 MHz at room temperature.  相似文献   

9.
The composition effects on the dielectric and magnetic properties of NiCuZn-BaTiO3 composites fired at low temperature were investigated. The coexistence of perovskite BaTiO3 and spinel ferrite phases in the composites were observed; no significant chemical reactions occurred between BaTiO3 and NiCuZn ceramics during sintering. The nanosized BaTiO3 powders favored a decrease in grain size. The saturation magnetization, remanent magnetization and real permeability continuously decreased with increasing BaTiO3 content. And the real permittivity continuously increased with the BaTiO3 content. The Q-factor (quality factor) exhibited relatively high values with 20-30 wt% BaTiO3. All composite materials exhibited a low dielectric loss below 100 MHz. Synthetically considerations, the composites with 20-30 wt% BaTiO3 could obtain relatively high real permeability and real permittivity values, and the magnetic and dielectric losses were relatively low, so they were the best candidates to produce LC-integrated chip elements.  相似文献   

10.
This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ?) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from −20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ?. It is established that, at high frequencies, the μ? of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ? in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.  相似文献   

11.
Nanocrystalline nickel-zinc ferrite thin films with the general formula Ni1−xZnxFe2O4, where x=0.0, 0.2, 0.4 and 0.6 were fabricated via a chemical route known as the citrate precursor route. These films were spin-deposited on indium-tin oxide coated glass, fused quartz and amorphous Si-wafer substrates, and annealed at various temperatures up to 650 °C. The films annealed below 400 °C were found to be X-ray amorphous, while the films annealed at and above 400 °C were polycrystalline exhibiting a single-phase spinel structure. The average grain size of the films evaluated by transmission electron microscopy, is found to be in the range 4-8.5 nm. The room temperature DC resistivity of the films is in the range 103-107 Ω m. Dielectric constant and dielectric loss were measured in the frequency range 100 Hz-1 MHz. Dielectric constant of the films is found to lie between 25 and 44, while the loss factor is if the order of 10−2. The higher values of the dielectric constant for films having higher zinc concentration are attributable to the enhanced hopping between Fe2+ and Fe3+ ions in these samples. The M-H hysteresis measurement of the nickel ferrite thin films annealed at 650 °C showed narrow hysteresis loop—a characteristic of soft ferromagnetic material.  相似文献   

12.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

13.
Metallo-organic decomposition derived dielectric thin films of calcium zirconate doped with various concentrations of strontium ((Ca, Sr)ZrO3) were prepared on Pt coated silicon substrate. Mainly in this paper, we present the investigations of their structural developments and present their electric and dielectric properties as well. The structural developments show that the CaZrO3 film has amorphous structure with carbonate existing when annealed at 600 °C, while annealed at 650 °C and above, the carbonate is decomposed and those films crystallize into perovskite phase without preferred orientation. In addition, the prepared (Ca, Sr)ZrO3 films with their Zr-O bonds affected by strontium doping are homogenous and stable as solid solutions in any concentration of strontium and all Bragg diffraction characteristics for the films shift downward with the increase in the concentration of strontium. Moreover, the electric properties show that the (Ca, Sr)ZrO3 films have very low leakage current density and high breakdown strength; typically, the CaZrO3 film annealed at 650 °C has the leakage current density approximately 9.5 × 10−8 A cm−2 in the field strength of 2.6 MV cm−1. Furthermore, the dielectric properties show that their dielectric constants are higher than 12.8 with very little dispersion in the frequency range from 100 Hz to 1 MHz and are independent of applied dc bias as well. The dielectric properties, in combination with the electric properties, make the materials promising candidates for high-voltage and high-reliability capacitor applications.  相似文献   

14.
The complex permittivity (ε′–″), complex permeability (μ′–″) and microwave absorption properties of ferrite–polymer composites prepared with different ferrite ratios of 50%, 60%, 70% and 80% in polyurethane (PU) matrix have been investigated in X-band (8.2–12.4 GHz) frequency range. The M-type hexaferrite composition BaCo+20.9Fe+20.05Si+40.95Fe+310.1O19 was prepared by solid-state reaction technique, whereas commercial PU was used to prepare the composites. At higher GHz frequencies, ferrite's permeabilities are drastically reduced, however, the forced conversion of Fe+3 to Fe+2 ions that involves electron hopping, could have increased the dielectric losses in the chosen composition. We have measured complex permittivity and permeability using a vector network analyzer (HP/Agilent model PNA E8364B) and software module 85071. All the parameters ε′, ε″, μ′ and μ″ are found to increase with increased ferrite contents. Measured values of these parameters were used to determine the reflection loss at various sample thicknesses, based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 80% ferrite content has shown a minimum reflection loss of −24.5 dB (>99% power absorption) at 12 GHz with the −20 dB bandwidth over the extended frequency range of 11–13 GHz for an absorber thickness of 1.6 mm. The prepared composites can fruitfully be utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).  相似文献   

15.
This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.  相似文献   

16.
A series of Zinc Oxide pellets sintered at different temperatures was studied by means of dielectric spectroscopy in the wide frequency range of 1–106 Hz and temperature interval from −100 °C to 30 °C. Electrical conductivity was analysed using Jonsher's universal power law, and the values of s were found to decrease with the increase in temperature, which agrees well with the correlation barrier hopping (CBH) model.  相似文献   

17.
Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.  相似文献   

18.
Crystals of strontium malonate (SrC3H2O4) were grown in silica gel by the single diffusion technique. The thermo gravimetric (TG), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies were carried out to investigate the thermal stability of the crystal. The dielectric behavior of the title compound crystal was investigated by measuring the dielectric parameters - dielectric constant, dielectric loss and AC conductivity as a function of four frequencies −1 kHz, 10 kHz, 100 kHz and 1 MHz at temperatures ranging from 50 to 170 °C. Results indicate that the title compound is thermally stable up to about 409 °C and is a promising low εr-value dielectric material. The magnetic behavior of the crystal was also explored using a vibrating sample magnetometer.  相似文献   

19.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

20.
Low-frequency (102-105 Hz) dielectric properties of TbMnO3+xTiO2 (x=0.33, 1, 3) ceramic composites, which were fabricated by conventional solid-state reaction, were investigated from 360 to 77 K. Very high dielectric constants and interesting temperature dependence of the dielectric properties were observed in the present composite ceramics. When compared to the high dielectric loss of the polycrystalline TbMnO3, the loss of TbMnO3+xTiO2 (x=0.33, 1, 3) decreased with the increasing TiO2. Especially for TbMnO3+1TiO2, the dielectric loss decreased remarkably, while the dielectric constant was still very high, which are more favorable for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号