首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W-type barium hexaferrites with compositions of Ba1Co0.9Zn1.1Fe16O27 and Ba0.8La0.2Co0.9Zn1.1Fe16O27 were synthesized by the sol-gel method. The electromagnetic properties and microwave absorption behavior of these two ferrites were studied in the 2-18 GHz frequency range. The microstructure and morphology of the ferrites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer. The XRD patterns show that the main phase of the Co2W ferrite forms without other intermediate phases when calcined at 1200 °C. The SEM images indicate that flake-like hexagonal crystals distribute uniformly in the materials. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the W-type barium hexaferrites. The microwave absorption property of the La3+ doping W-type hexaferrite sample is enhanced with the bandwidth below −10 dB around 8 GHz and the peak value of reflection loss about −39.6 dB at the layer thickness of 2 mm.  相似文献   

2.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

3.
The complex permittivity (ε′–″), complex permeability (μ′–″) and microwave absorption properties of ferrite–polymer composites prepared with different ferrite ratios of 50%, 60%, 70% and 80% in polyurethane (PU) matrix have been investigated in X-band (8.2–12.4 GHz) frequency range. The M-type hexaferrite composition BaCo+20.9Fe+20.05Si+40.95Fe+310.1O19 was prepared by solid-state reaction technique, whereas commercial PU was used to prepare the composites. At higher GHz frequencies, ferrite's permeabilities are drastically reduced, however, the forced conversion of Fe+3 to Fe+2 ions that involves electron hopping, could have increased the dielectric losses in the chosen composition. We have measured complex permittivity and permeability using a vector network analyzer (HP/Agilent model PNA E8364B) and software module 85071. All the parameters ε′, ε″, μ′ and μ″ are found to increase with increased ferrite contents. Measured values of these parameters were used to determine the reflection loss at various sample thicknesses, based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 80% ferrite content has shown a minimum reflection loss of −24.5 dB (>99% power absorption) at 12 GHz with the −20 dB bandwidth over the extended frequency range of 11–13 GHz for an absorber thickness of 1.6 mm. The prepared composites can fruitfully be utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).  相似文献   

4.
The effect of Mn2+Co2+Ti4+ substitution on microwave absorption has been studied for BaCo0.5Mn0.5Ti1.0Fe10O19 ferrite-acrylic resin composites in frequency range from 12 to 20 GHz. X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer, AC susceptometer and vector network analyzer were used to analyze the structural, magnetic and microwave absorption properties. The results showed that the magnetoplumbite structures for all samples have been formed. Based on microwave measurement on reflectivity, BaCo0.5Mn0.5Ti1.0Fe10O19 may be a good candidate for electromagnetic compatibility and other practical applications at high frequency.  相似文献   

5.
The development of nanosized materials is a subject of considerable interest both for understanding of the fundamental properties of magnetic materials for new technological applications. Polyaniline, composites Fe3O4/(PANI) with conducting, magnetic and electromagnetic properties with different amounts of Fe3O4 were successfully prepared. The samples were structurally characterized by scanning electron microscopy (SEM), X-ray diffraction and transmission electron microscopy (TEM) and magnetically, with a superconducting quantum interference device (SQUID) magnetometer. In order to explore microwave-absorbing properties in X-band, the composite nanoparticles were mixed with an epoxy resin to be converted into a microwave-absorbing composite. Microwave behavior with different Fe3O4/(PANI)-epoxy resin ratio was studied using a microwave vector network analyzer (VNA) in the range 7.5 to 13 GHz. For a constant thickness of 1.5 mm, absorption increases with the magnetite contents in the composites and in the oriented samples by the application of a magnetic field.  相似文献   

6.
Magnetic hollow spheres of low density were prepared by plating Fe3O4 magnetic films on hollow glass spheres using ferrite plating. The complex permeability and permittivity of spheres–wax composites were measured in the range of 2–18 GHz. The complex permeability and permittivity increased, and the dielectric and magnetic losses were improved as the volume fraction of the magnetic spheres in the composites increased from 60% to 80%, which also resulted in a great improvement of microwave absorption properties. For composites with volume fraction 80%, its magnetic resonance frequency was at about 13 GHz and it appeared three loss peaks in the calculated reflection loss curves; the bandwidth less than −10 dB was almost 4 GHz which was just in the Ku-band frequencies (12–18 GHz) and a minimum reflection loss of −20 dB was obtained when the thickness was 2.6 mm; the microwave absorbing properties were mainly due to the magnetic loss. The results showed that the magnetic spheres composites were good and light microwave absorbers in the Ku-band frequencies.  相似文献   

7.
W-type barium ferrites Ba(MnZn)0.3Co1.4R0.01Fe15.99O27 with R=Dy, Nd and Pr were prepared by chemical coprecipitation method. Effects of rare-earth elements (RE) substitution on microstructural and electromagnetic properties were analyzed. The results show that a small amount of RE3+ ions can replace Fe3+ ions and adjust hyperfine parameters. An obvious increase in natural resonance frequency and high frequency relaxation, and a sharp decrease for complex permittivity have been observed. Furthermore, the matching thickness and the reflection loss (RL) of one-layer ferrite absorber were calculated. It reveals that thin and broad-band can be obtained by RE-substitution. But only when the magnetic moment of RE3+ is higher than that of Fe3+, can substitution be effective for higher RL. Dy-substituted ferrite composite has excellent microwave absorption properties. The frequency (with respect to −10 dB RL) begins from 9.9 GHz, and the bandwidth reaches far more than 8.16 GHz. The peak value is −51.92 dB at a matching thickness of 2.1 mm.  相似文献   

8.
Hexagonal ferrite BaZn1.1Co0.9Fe16O27 coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn1.1Co0.9Fe16O27 nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber.  相似文献   

9.
Ba(1−x)LaxFe12O19 (0.00≤x≤0.10) nanofibers were fabricated via the electrospinning technique followed by heat treatment at different temperatures for 2 h. Various characterization methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and microwave vector network analyzer were employed to investigate the morphologies, crystalline phases, magnetic properties, and complex electromagnetic parameters of nanofibers. The SEM images indicate that samples with various values of x are of a continuous fiber-like morphology with an average diameter of 110±20 nm. The XRD patterns show that the main phase is M-type barium hexaferrite without other impurity phases when calcined at 1100 °C. The VSM results show that coercive force (Hc) decreases first and then increases, while saturation magnetization (Ms) reveals an increase at first and then decreases with La3+ ions content increase. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the M-type barium hexaferrites. The microwave absorption performance of Ba0.95La0.05Fe12O19 nanofibers gets significant improvement: The bandwidth below −10 dB expands from 0 GHz to 12.6 GHz, and the peak value of reflection loss decreases from −9.65 dB to −23.02 dB with the layer thickness of 2.0 mm.  相似文献   

10.
The effect of Mg2+, Co2+and Ti4+ substitution on microwave absorption has been studied for BaMg0.5Co0.5Ti1.0Fe10O19 ferrite-acrylic resin composite in frequency range from 13 to 20 GHz. X-ray diffraction (XRD), scanning electron microscopy (SEM), vector network analysis and vibrating sample magnetometry (VSM) were employed to analyze structure, electromagnetic and microwave absorption properties of prepared ferrite. The obtained results of reflectivity demonstrate that by varying matching thickness along with weight percentage of ferrite to acrylic resin, the bandwidth coupled with reflection loss values of prepared composites can be easily tuned. Based on microwave measurement on reflectivity, it is found that BaMg0.5Co0.5Ti1.0Fe10O19 is a good candidate for wideband electromagnetic compatibility and other practical applications at high frequency.  相似文献   

11.
Fe/graphite oxide nanocomposites were prepared by inserting Fe3+ into layers of graphite oxide and then reducing Fe3+/graphite oxide compound at different reduced reaction temperatures in H2. The composition, crystal structure, magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites were investigated using elemental analysis, transmission electron microscope (TEM), X-ray diffraction (XRD), magnetic hysteresis curve and electromagnetic parameter analysis. The results show that the densities of samples are 2.43–2.47 g/cm3 and the nanocomposites are soft magnetic materials. The optimum reduced reaction temperature for preparing Fe/graphite oxide nanocomposites is 600 °C. With the increase of the thickness of the sample, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. Microwave absorption property of Fe/graphite oxide nanocomposites prepared at 600  °C (FeGO600) is the best. When the thickness is 1 mm, the maximum theoretical reflection loss of FeGO600 is −9 dB and the frequency region in which the maximum reflection loss is more than −6.0 dB is 11–18 GHz. In conclusion, FeGO600 is a good candidate for microwave absorbent due to its low density, wide frequency region for microwave absorption and large reflection loss.  相似文献   

12.
A novel kind of hybrid nanospheres made of Fe3O4 and ferrocenyl-CuPc (FCP) was prepared via effective solvothermal method and performed microwave absorptivity only in Ku-band with minimum reflection loss of −25 dB at 16.0 GHz corresponding to absorbing about 99.7% content of microwave. Scanning electron microscopy images indicated that the nanospheres with uniform particle size distribution have the average diameter of 135 nm. Due to the synergistic reaction between magnetic ferrocenyl-CuPc and Fe3O4, the hybrid nanospheres showed novel electromagnetic properties. The real part of complex permittivity of hybrid nanospheres remains stable in the range of 0.5–12.0 GHz and has a large fluctuation at 16.5 GHz. Moreover, the dielectric loss of hybrid nanospheres also appeared a sharp peak at 16.3 GHz with the value of 2.7. The specific gravity of hybrid nanospheres is about 2.08. On the basis of these results, the novel hybrids are believed to have potential applications in the microwave absorbing area in Ku-band.  相似文献   

13.
Fe1−xCox alloy microparticles with size 3-5 μm and novel flower-like shapes were prepared by a simple low temperature reduction method. The electromagnetic properties for the paraffin matrix composites containing Fe1−xCox alloy microparticles were measured using a vector network analyzer in the 2-18 GHz frequency range. As a consequence of large surface- and shape-anisotropy energy for the flower-like shaped 3D microstructures, the strong natural resonance around 8-12 GHz and remarkable dielectric relaxation were observed in the complex permittivity and permeability spectrum, which are dominant in the enhanced electromagnetic wave absorption (EMA) performance. It was found that both the electromagnetic parameters of complex permittivity and permeability and the intensity and location of absorption band were remarkably dependent on the Co/Fe molar ratio. The enhanced EMA performance was obtained in these Fe1−xCox-paraffin (x=0.4, 0.5, and 0.6) composites system. For the Fe0.5Co0.5 alloy, the reflection loss (RL) exceeding −20 dB was obtained in the broad frequency range of 5.4-18 GHz with a thin sample thickness of between 1.0 and 2.9 mm. In particular, an optimal RL of −59 dB was obtained at 3.61 GHz with a thin thickness of 3.6 mm for the Fe0.4Co0.6 sample. The Fe1−xCox alloy microparticles may be attractive candidates for applications of microwave absorption materials with a wide frequency range and strong absorption in the high frequency region.  相似文献   

14.
La1−xSrxMn1−yFeyO3 nanocrystalline powders were prepared by the sol-gel method as a microwave absorption material. The reflectance, the dielectric loss tan δe and the magnetic loss tan δm of the samples were calculated according to the data of electromagnetism parameters measured by a microwave vector network analyzer in the frequency range 2-18 GHz. The dielectric loss tan δe and the magnetic loss tan δm had a step-change at a certain frequency so that the superiority of dielectric loss change into the superiority of magnetic loss, which indicated that anti-ferromagnetic clusters in the material change into ferromagnetic clusters by absorbing quantum of microwave electromagnetic field when the frequency of incident microwave reaches a certain value. The effective absorption bandwidth higher than 10 dB reached 6.2 GHz. As a result, the La0.8Sr0.2Mn1−yFeyO3 has shown useful applications as a microwave absorption material.  相似文献   

15.
Materials consisting of nanometer-sized magnetic particles are currently the subject of intensive research activities. Especially, much attention has been paid to their promising features for microwave magnetic properties. Well dispersed Fe3O4 nanoparticles of 30 nm have been synthesized by oxidization method with NaNO2, and the microwave magnetic properties of the composites have been studied. The real and imaginary part of relative permittivity remained low and nearly constant in the region of 0.1–18 GHz, respectively. As a result, the resin composites having a thickness of 2.0–3.2 mm, and containing 20 vol% Fe3O4 in the form of nanoparticles with an average diameter of 30 nm, exhibited excellent electromagnetic wave absorption properties in the frequency range of 4.5–12.0 GHz.  相似文献   

16.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

17.
The microwave absorption properties of nanosized double perovskite Sr2FeMoO6 and epoxy resin composites were investigated in the frequency range of 2-18 GHz using the coaxial method. The Sr2FeMoO6 composites with an optimal 20 wt% epoxy resin showed a strong electromagnetic attenuation of −49.3 dB at 8.58 GHz with a matching thickness of 2.15 mm. Moreover the optimum absorption frequency at which the reflection loss is less than −20 dB, which corresponds to 99% reflection loss of the incident microwave, is from 5.7 to 13.2 GHz with the matching thickness ranging from 3.0 to 1.5 mm. The excellent microwave-absorption properties are a consequence of a proper electromagnetic match due to the existence of the insulating matrix of anti-site defects and anti-phase domains, which not only contribute to the dielectric loss but also to the reduced eddy current loss.  相似文献   

18.
The electromagnetic wave-absorption properties of Nd3Fe68−xMnxCo18B11 (x=0, 1, 2) alloys obtained by rapid quenching from the melt was studied. The complex permittivity-frequency and permeability-frequency properties were determined in the microwave frequency regime of 2–18 GHz by vector network analysis. XRD spectra showed that only α-Fe diffraction peak was observed in the as-spun alloys. It is found that the acquired complex permittivity and permeability values match the microwave frequency when the 1 at% Mn content was doped. A minimum reflection loss of −6.9 dB is obtained at 2.7 GHz for composite Nd3Fe66Mn2Co18B11 with absorber thickness of 1.5 mm. The exchange interaction was attributed to the microwave absorption properties. The results suggest a new design of microwave absorbers based on electromagnetic wave-absorbing materials.  相似文献   

19.
We have investigated the electromagnetic (EM) characteristics of CoxMn1−xFe2O4 spinel ferrite (where x=0.0, 0.5 and 1.0) nanoparticles (NPs)/paraffin nanocomposite material at 8-20 GHz. CoxMn1−xFe2O4 NPs have been synthesized by cetyltrimethylammonium assisted hydrothermal route using NaOH. A variation in complex dielectric permittivity and magnetic permeability at room temperature with frequency in the range 8-20 GHz has been studied. Particles showed phase purity and crystallinity in powder X-ray diffraction (XRD) analysis. At the same time, CoxMn1−xFe2O4 NPs demonstrated a spinel cubic structure from XRD results. A reflection loss of −46.60 dB was found at 10.5 GHz for an absorber thickness of 2 mm. CoxMn1−xFe2O4 may be attractive candidates for EM wave absorption materials.  相似文献   

20.
Sol–gel method was used to prepare W-type BaCo2Fe16O27 hexaferrite and La-doped Ba0.7La0.3Co2Fe16O27 hexaferrite. Electromagnetic parameters of the ferrites and short carbon fiber composites were measured, and reflectivity was calculated according to transmission-line theory in the range 12.4–18 GHz. The results show that reflection loss of the doped ferrite composite is higher as compared to the no doped ferrite composite. Based on the above calculation, double-layer absorbers containing La-doped ferrite and carbon fiber composites were designed, and reflectivity of the double-layer absorbers made of different thickness and composition was calculated. Finally, a kind of structural absorber having excellent absorbing properties was achieved, and the bandwidth of the reflection loss less than −10 dB can reach 5.2 GHz in the range of 12.4–18 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号