首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

2.
The magnetic properties and the Griffiths singularity were investigated in Mn-site doped manganites of La0.45Sr0.55Mn1−xCoxO3 (x=0, 0.05, 0.10 and 0.15) in this work. The parent sample La0.45Sr0.55MnO3 undergoes a paramagnetic-ferromagnetic transition at TC=290 K and a ferromagnetic-antiferromagnetic transition at TN=191 K. The doping of Co ions enhances the ferromagnetism and suppresses the antiferromagnetism. The enhanced ferromagnetism results from the fact that the Co doping enhances the Mn3+-Mn4+ double-exchange interaction and induces the Co2+-Mn4+ ferromagnetic superexchange interaction. Detailed investigation on the magnetic behavior above TC exhibits that the Griffiths singularity takes place in this series of Mn-site doped compounds. The correlated disorder induced by the Co ionic doping, together with the phase competition from the ferromagnetic and the antiferromagnetic interactions among Mn ions, is responsible for the Griffiths singularity.  相似文献   

3.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

4.
Ge1−xMnx (x = 0, 0.013, 0.0226, 0.0339, 0.0565, 0.0678, 0.0904, 0.113) films prepared by magnetron sputtering at 773 K had a Ge cubic structure except for x = 0.1130. Co ion implantation into these films can effectively prevent the formation of a second phase. Both single-doped and co-doped samples were ferromagnetic at room temperature. The d-d exchange interaction between the interstitial Mn (MnT) and the substituted Mn (MnGe) resulted in ferromagnetism in the sputtered films. Since Co ion implantation destroyed the MnT-MnGe-MnT complex, the saturated magnetization decreased. Hall measurements revealed that the Co ion implanted films were n-type semiconductors, and the anomalous Hall Effect (AHE) suggested the ferromagnetism was carrier-mediated in the implanted films.  相似文献   

5.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

6.
This study reports the structural and magnetic properties of spinel systems Li4Mn5−xTixO12 (“4-5-12” series) and LiNi0.5Mn1.5−xTixO4 (“LNMTO” series), both based on Mn4+ substitution by Ti4+. Intermediate compositions covering the whole range of compositions (0≤x≤5 and 0≤x≤1.5, respectively) were prepared by solid state reaction. The 4-5-12 system forms a continuous spinel solid solution, whereas the spinel phase range in LNMTO stops before the end member “LiNi0.5Ti1.5O4”, which is multi-phased with a major hexagonal phase component. Cell parameters and (Mn,Ti)-O distances increase monotonically with titanium content in both series. In the LNMTO series, the end member LiNi0.5Mn1.5O4 is known to form a superstructure with Ni/Mn cation ordering. Neutron diffraction and Raman spectroscopy show that this order is lost when Ti is substituted, even at low level (x=0.15). The LNMTO crystal chemistry is also complicated by the presence of partial cation inversion, and the presence of a secondary rocksalt-type phase that modifies the spinel stoichiometry. Magnetic properties are characterized by a competition between ferromagnetic and antiferromagnetic interactions; no magnetic ordering is achieved, in agreement with B-site cation frustration and disorder. Electrochemical measurements show that the Ti3+/4+ and Mn3+/4+ redox couples behave independently in the 4-5-12 series, and that titanium decreases the high-potential electrochemical redox activity of LNMTO because of its blocking character for electron transfer to and from the nickel sites in the spinel structure.  相似文献   

7.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   

8.
Zn0.95−xCo0.05CuxO (ZCCO, where x = 0, 0.005, 0.01 and 0.015) thin films were deposited on Si (1 0 0) substrates by pulsed laser deposition technique. Crystal structures, surface morphologies, chemical compositions, bonding states and chemical valences of the corresponding elements for ZCCO films were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). XRD and FESEM results indicate that crystallite sizes of the highly (0 0 2)-oriented ZCCO films slightly decrease with increasing Cu content. When the Cu content increases from 0 to 0.015, Zn 2p3/2, Co 2p, Cu 2p3/2 and O 1s peaks of the ZCCO film shift towards higher or lower binding energy regions, and the reasons for these chemical shifts are investigated by fitting the corresponding XPS narrow-scan spectra. Both in-plane and out-of-plane magnetization-magnetic field hysteresis loops of the ZCCO films reveal that all the films have room temperature ferromagnetisms (RTFMs). The conceivable origin of the RTFM is ascribed to the combined effects of the local structural disorder resulted from (Co2+, Cu2+, Cu1+)-cations which substitute Zn2+ ions in the ZnO matrices, ferromagnetic coupling between coupled dopant atoms caused by Co2+ (3d74s0) and Cu2+ (3d94s0) spin states, and exchange interactions between the unpaired electron spins originating from lattice defects induced by Cu doping in the Zn0.95Co0.05O matrices.  相似文献   

9.
Manganese ions were implanted into unintentionally doped GaN epilayers grown by metal organic chemical vapor deposition (MOCVD). The (Ga,Mn)N and GaxMny phases were formed after Mn-implanted undoped GaN epilayers annealed at 700 and 800 °C. The samples showed ferromagnetic behavior at room temperature with the highest magnetization obtained in the sample annealed at 800 °C. Ferromagnetic signal reduces as annealing temperature increased above 900 °C. It is believed that the room-temperature ferromagnetic property of Mn-implanted undoped GaN epilayers are mainly from (Ga,Mn)N. The GaxMny phases play a critical role in providing holes and also contribute to increasing the ferromagnetic property.  相似文献   

10.
Electron paramagnetic resonance spectroscopy was used for studying the effect of allied and alien ions on the EPR spectrum of Mn4+-containing lithium-manganese spinel oxides. Manganese spinel oxides with paramagnetic Mn4+ and diamagnetic substituents in the 16d spinel sites were studied: Li[Mg0.5Mn1.5]O4, Li[Mg0.5−xCo2xMn1.5−x]O4, 0<x≤0.5, and Li[Li1/3Mn5/3]O4. Ni2+-ions with integer-spin-ground state (S=1) were selected as alien ions: Li[Mg0.5−xNixMn1.5]O4 (0≤x≤0.5), Li[Li(1−2x)/3NixMn(5−x)/3]O4 (0≤x≤0.5), and Li[Ni0.5Mn1.5−yTiy]O4 (0≤y≤1.0). It was shown that in Ni-substituted oxides the low temperature EPR response comes from magnetically correlated Ni-Mn spins, while at high registration temperature Mn4+ ions give rise to the EPR profile. Analysis of the EPR line width allows differentiating between the contributions of the density of paramagnetic species and the strength of the exchange interactions in magnetically concentrated systems. The density of allied and alien paramagnetic species has no effect on the EPR line width in cases when the strengths of antiferro- and ferromagnetic interactions on an atomic site are close. On the contrary, when antiferro- or ferromagnetic interactions on an atomic site are dominant, the EPR line width increases with the density of paramagnetic species.  相似文献   

11.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

12.
In this paper, we have investigated Mn-doped SnO2 powder samples prepared by solid-state reaction method. X-ray diffraction showed a single phase polycrystalline rutile structure. The atomic content of Mn ranged from ∼0.8 to 5 at%. Room temperature M-H loops showed a ferromagnetic behavior for all samples. The ferromagnetic Sn0.987Mn0.013O2 showed a coercivity Hc=545 Oe, which is among the highest reported for dilute magnetic semiconductors. The magnetic moment per Mn atom was estimated to be about 2.54 μB of the Sn0.9921Mn0.0079O2 sample. The average magnetic moment per Mn atom sharply decreases with increasing Mn content, while the effective fraction of the Mn ions contributing to the magnetization decreases. The magnetic properties of the Sn1−xMnxO2 are discussed based on the competition between the antiferromagnetic superexchange coupling and the F-center exchange coupling mechanism, in which both oxygen vacancies and magnetic ions are involved.  相似文献   

13.
Polycrystalline YMn1−xFexO3 (x=0.02-0.20) powders were synthesized by means of modified citrate method. Powder X-ray diffraction gives evidence that all the samples are single phase and exhibit hexagonal structure with P63cm space group as observed for YMnO3. The solubility limit of Fe was determined as about 6 wt.%. Cell parameter values were found to increase with Fe content, since Fe3+ and Mn3+ have the same ionic radii. This can be attributed to the increase of the tilting of MnO5 bipyramid and the buckling of Y atoms. In addition, 57Fe Mössbauer spectrometry provides evidence of two Fe3+ sites attributed to two different nearest atomic neighbours. Magnetic properties reveal a paramagnetic-to-antiferromagnetic transition, a possible increase of the magnetic anisotropy, and a competition between ferromagnetic and antiferromagnetic interactions.  相似文献   

14.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

15.
Observation of room-temperature ferromagnetism in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1−xNix)2O3 (0?x?0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at room-temperature. The highest saturation magnetization (0.453 μB/Fe+Ni ions) moment is reached in the sample with x=0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10 at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases.  相似文献   

16.
The cation valence and distribution in copper manganese spinels containing 1.0-1.6 mol copper per formula unit (CuxMn3−xO4) was resolved from their electrical conductivity and thermoelectric properties. The limit of thermal stability of the cubic spinel phase was also determined for each stoichiometry. A corrected phase diagram for the Cu-Mn-O system in air is proposed accordingly. The electronic defect structure could be described through a chemical approach, involving the competition between the redox of Cu+ and Mn4+ to Cu2+ and Mn3+ and the disproportionation of the Jahn-Teller ion Mn3+ into Mn2+ and Mn4+. Thermodynamic parameters for the redox reaction were determined from experimental data as well as calculated, confirming the validity of the modeled defect equilibria.  相似文献   

17.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

18.
The Mn-based Heusler alloys encompass a rich collection of useful materials from highly spin-polarized systems to shape memory alloys to magnetocaloric materials. In this work we have summarized our studies of magnetostructural transitions from paramagnetic austenite to ferromagnetic martesite phases at TMC in Ni2MnGa-based alloys (Ni2Mn0.75Cu0.25-xCoxGa, Ni2Mn0.70Cu0.30Ga0.95Ge0.05, Ni2Mn1-xCuxGa, Ni2+xMn1-xGa, and Ni2Mn0.75-xCuxGa), and martensitic transitions from the ferromagnetic austenite to the martesite state in off-stoichiometric Ni-Mn-(In/Sb) Heusler alloys. The phase transition temperatures and respective magnetic entropy changes (ΔS) depend on composition in these systems and have been determined from magnetization measurements in the temperature interval 5-400 K, and in magnetic fields up to 5 T. It is shown that, depending on the composition and doping scheme the “giant” ΔS=40-60 J/(kgK) (for a field change of 5 T) can be observed in the temperature range (300-360 K) for the Ga-based alloys. The interplay between or coupling of the various transitions in Ni2Mn(Mn,X) systems with X=Sb and In leads to exchange bias effects, giant magnetoresistance, and both inverse and “normal” magnetocaloric effects.  相似文献   

19.
The samarium doping zinc oxide (Zn1-xSmxO) with (x=0.0, 0.04, 0.05 and 0.17) polycrystalline thin films have been deposited on n-Si(1 0 0) substrate using thermal evaporation technique. Ceramic targets for deposition were prepared by the standard solid-state reaction method and sintered in nitrogen atmospheres. X-ray diffraction and scanning electron microscopy analyses show that the bulk and films features reveal wurtzite crystal structure with a preferential (1 0 1) crystallographic orientation and grows as hexagonal shape grains. According to the results of the Hall effect measurements, all the films show p-type conductivity, possibly a result of nitrogen incorporation into the Sm-doped ZnO samples. Magnetic measurements show that ferromagnetic behavior depends on the Sm3+ concentration. For a film with lower Sm2O3 contents (x=0.04), a phenomenon of paramagnetism has been observed. While, with further increase of Sm3+ contents (x=0.05) the ferromagnetic behavior has been observed at room temperature. However, at higher doping content of Sm3+, the ferromagnetic behavior was suppressed. The decrease of ferromagnetism with increasing doping concentration demonstrates that ferromagnetism observed at room temperature is an intrinsic property of Zn1-xSmxO films.  相似文献   

20.
We present a detail study of the effect of excess metal atoms on the magnetic properties of Cu1+xCr2+yTe4 at 2-400 K. With the increase in x=0-1 and y<0.3, these compounds retain metallic behavior, while ferromagnetic ordering temperature reduces from 325 to 160 K. Our low field susceptibility χac measurements reveal a second transition on cooling below the ferromagnetic ordering; the transition at around 160-180 K intensifies with the excess amount of copper and chromium atoms. The value of spontaneous magnetization at 2 K remains between 2.6 and 2.9μB across all the compositions and it reduces with temperature as M(T)∼A0T3/2+A1T5/2, as expected for the excitation of Bloch's spin waves in a model of the Heisenberg ferromagnet. Our terminal composition Cu1.9Cr2.25Te4 showed only second transition at 160 K with short range magnetic order much above the transition temperature and in the absence of the specific heat jump at this temperature. The magnetic properties are explained as a result of random magnetic anisotropy in the excess-metal compositions induced by the interstitial atomic defects in their parent spinel structure. The large stuffing of cations has been made possible in the telluride compounds because of the large size of tellurium and also by the covalent bonding that stabilizes the defect structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号