首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferromagnetic shape memory alloy with nominal composition Co37Ni34Al29 is investigated by transport and magnetic measurements. The anomaly due to the martensitic transition is observed around 130-210 K. The thermal hysteresis, observed due to martensitic transition in the dc magnetization versus temperature data, gets suppressed at higher applied field. Below 50 K, magnetization varies with temperature perfectly as T3/2, which signifies that spin wave excitations are largely responsible for thermal demagnetization. The sample shows small negative magneto-resistance, which varies non-monotonically with temperature showing largest value at around 200 K.  相似文献   

2.
Effect of Al doping on the martensitic transition and magnetic entropy change in Mn50Ni40Sn10−xAlx was investigated. The experimental results show that the martensitic transition temperatures increase with the increase of Al content due to cell contraction, while the martensitic transition temperature range decreases rapidly. Mn50Ni40Sn8Al2 alloy has the largest value of  (3.14 J/kg K) for the magnetic field changing from 0 to 10 kOe, which is nearly twice as large as that of Mn50Ni40Sn10 alloy. It is demonstrated that a larger can be obtained due to the sharper magnetization change around martensitic transition.  相似文献   

3.
Strained epitaxial La0.5Sr0.5CoO3 films are grown on LaAlO3 substrate. Structural, electrical, and magnetic measurements were carried out. Out of plane lattice parameter of the film undergoes compressive strain and the coercivity is enhanced. The zero field cooled (ZFC) magnetization curve for a field applied parallel to the film plane shows a jump, which suggests a spin reorientation transition (SRT), while ZFC magnetization for a field applied perpendicular to the film plane is featureless. This jump in magnetization is shifted to higher temperatures when the magnetic field is reduced. The SRT is attributed to the strain in the film.  相似文献   

4.
The magnetothermal properties of pseudo binary Ho1−xErxAl2 alloys have been investigated by heat capacity measurements. Two anomalies are observed in the heat capacity of HoAl2. A sharp peak at 20 K represents the first order spin reorientation transition, and a second order anomaly occurs in the vicinity of the ferromagnetic transition at 32 K. As Ho is partially replaced by Er in Ho1−xErxAl2 the sharpness of the first order heat capacity peak diminishes with increasing Er concentration, while the temperature of this transition remains practically unaffected. The second order ferromagnetic transition shifts to higher temperature region with increasing Er concentration. The observed behaviors are explained considering the geometry of 4f charge densities of Ho3+ and Er3+ and the easy magnetization directions of HoAl2 and ErAl2.  相似文献   

5.
In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).  相似文献   

6.
The single crystal of the new ternary compound Sm12Fe14Al5 was grown and its crystallographic and magnetic properties were investigated. Sm12Fe14Al5 has a hexagonal structure of the space group p-3m1 and shows ferromagnetism with a Curie temperature of 245 K. The easy direction of magnetization is parallel to the c-axis at temperatures between 245 and 85 K; however, it changes to the c-plane below 85 K through a first-order-like phase transition. No saturation is observed in the magnetization curve even under the applied field of 55 kOe at 5 K. Sm12Fe14Al5 seems to have a large coercive field at very low temperatures. The anisotropy field was estimated at 5 and 120 K and the saturation magnetization of low temperature phase is explained assuming a ferromagnetic coupling between Fe and Sm sublattices.  相似文献   

7.
Melt-spun ribbons of Co69Fe7Si14B10 alloy have been prepared at different wheel speeds viz. 47, 34 and 17 m/s and investigated for structural and magnetic properties. Degree of amorphicity in the as-spun ribbons is found to increase with wheel speed. Amorphous phase crystallizes in two stages producing Co2Si, Co2B and CoSi phases on annealing. Increase in wheel speed improves soft magnetic and magnetoimpedance properties due to decrease in perpendicular anisotropy which is associated with stripe domain formation. On annealing soft magnetic properties and magnetoimpedance deteriorate due to the formation of crystalline phases.  相似文献   

8.
The investigation addresses low temperature magnetization behavior in Co36Fe36Si3Al1Nb4B20 alloy ribbons in their as-spun as well as annealed state. Optimum heat treatment at 875 K led to nanocrystallization whereby bcc-(FeCo)SiAl nanoparticles were dispersed in an amorphous matrix as evidenced from transmission electron microscopy. Low temperature magnetization studies were carried out in the range 77-300 K. Using the method of mathematical fittings, magnetization extrapolated to 0 K was obtained. The dependence of the magnetization with respect to temperature of BT3/2 was used to determine the Bloch coefficient “B” and spin wave stiffness constant “D”. Magnetic softening revealed by lowering in the coercivity in the optimum nanostructured state was also the cause of a drop in the stiffness constant. The range of exchange interaction given by D/TC was higher in the nanostructured state compared to the as-spun amorphous state. The effect of nanocrystallization and the resulting ferromagnetic coupling was further evidenced by low temperature magnetization studies.  相似文献   

9.
The effect of Sn doping at the Ga site of Ni2MnGa is investigated through magnetic and magneto-transport measurements. Clear signatures of martensitic and premartensitic transitions are observed in the pure as well as in 5% Sn doped alloy. For 10% Sn doping, the martensitic transition vanishes, while the premartensitic transition remains visible at low temperature. All the samples are found to have a ferromagnetic ground state with saturation moment decreasing with increasing Sn concentration. The magnetocaloric effect near the martensitic transition in the pure and 5% Sn doped samples is found to be positive. However, the entropy change is found to decrease with increasing magnetic field, which is particularly prominent in the undoped sample. The samples also show negative magnetoresistance with anomalies at the martensitic and premartensitic transition points.  相似文献   

10.
The martensitic transformation in Co37Ni34Al29 ribbon is characterized in detail by means of in-situ thermostatic x-ray diffraction and magnetic measurements.The results show a structural transition from the body-centred cubic to martensite with a tetragonal structure during cooling.Comparison between the results of the diffraction intensity with the magnetic susceptibility measurements indicates that the martensitic transformation takes place in several different steps during cooling from 273 to 163 K.During heating from 313 to 873 K,the peak width becomes very wide and the intensity turns very low.The γ-phase(face-centred cubic structure) emerges and increases gradually with temperature increasing from 873 to 1073 K.  相似文献   

11.
X. Wang  Y. Gao  H. Chen  Y. Chen  X. Liang  W. Lin  N.X. Sun 《Physics letters. A》2018,382(23):1505-1508
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200μm500μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.  相似文献   

12.
Evaporative deposition at oblique incidence is shown to enhance the magnetic anisotropy of an Fe20Ni80 magnetic film and induce magnetic anisotropy in an overlying, strongly isotropic Fe70Co30 film. This deposition method for the formation of an underlayer of several lattice parameters in thickness and semi-hard overlayer of a few thousands Angstroms in thickness achieves a significant change in the magnetization process and strong suppression of the coercive forces of Fe70Co30 in the hard magnetization direction. Soft magnetization of the Fe70Co30 overlayer is not achieved when one of the layers is deposited at oblique incidence. It is anticipated that shape magnetic anisotropy is responsible in part for the magnetic anisotropy induced in both in Fe20Ni80 under- and Fe70Co30 overlayer by oblique incidence evaporation.  相似文献   

13.
[Co83Fe17/Au/Co/Au]N sputter deposited multilayers displaying a giant magnetoresistance have been investigated. Complementary magnetic measurements were conducted in order to characterize a spin reorientation transition in Co83Fe17 layers sandwiched between Au spacers. The transition from a perpendicular magnetic anisotropy to easy-plane one takes place at the thickness of about 1 nm.  相似文献   

14.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

15.
Magnetic anisotropy and magnetooptic Kerr effect for epitaxial films of CoxMnyGe1−xy grown on Ge (1 1 1) substrates have been studied systematically in the compositional vicinity of the Heusler alloy Co2MnGe. A large quadratic magnetooptic Kerr effect has been observed within a narrow region of composition centered around the Co to Mn atomic ratio of 2. The effect has been used to probe and quantify the magnetic anisotropy of the system, which is shown to have a strong sixfold in-plane component accompanied by a weak uniaxial component at room temperature. These properties are shown to depend sensitively on atomic ratio between Co and Mn, indicating the presence of an intrinsic composition-driven phenomenon.  相似文献   

16.
The spin configurations of two dimensional ferromagnetic/antiferromagnetic system were investigated using model calculations and Monte-Carlo simulation methods. The lowest energy state was obtained under various coupling conditions to investigate the role of interfacial interaction on anisotropy. We found that the total ferromagnetic layer anisotropy is contributed not only from its own crystalline anisotropy but also from the antiferromagnetic layer spin flop effect. The overall ferromagnetic layer effective anisotropy is calculated as a function of the exchange energy of antiferromagnetic layer and the interfacial interaction energy. If the effective anisotropy from the spin flop effect is comparable with the crystalline anisotropy, the asymmetric spin configuration is generated. In this configuration, the magnetization direction of the ferromagnetic layer is neither perpendicular nor parallel to the antiferromagnetic spin direction. Temperature effect on the perpendicular-to-collinear coupling transition was also investigated using Monte-Carlo simulation, and the relationship between the effective anisotropy and the temperature was obtained.  相似文献   

17.
Ferromagnetic nanocomposite (Fe44Co56)77Hf12N11 films were deposited to investigate their intrinsic damping mechanisms due to scattering of itinerant electrons, which carry the magnetic moment of the ferromagnetic transition elements. The films were produced by reactive r.f. magnetron sputtering using a 6 in. Fe37Co46Hf17 target. They were annealed at 400 °C in a static magnetic field, in order to induce in-plane uniaxial anisotropy. Subsequently, the films can be considered as uniformly magnetised. A ferromagnetic resonance frequency (FMR) of around 2.3 GHz could be attained, which was determined by measuring the real and imaginary parts of the frequency dependent permeability up to 5 GHz. The imaginary part, which represents a typical resonance curve, was utilised to obtain its full-width at half-maximum Δfeff (FWHM) for the total damping behaviour characterisation. Thereby, it is possible to extract the intrinsic Gilbert damping parameter αint, which in turn can be decomposed into two additional damping terms αsf and αos allocated to “spin-flip” and “ordinary scattering”, respectively. This result is correlated and discussed in terms of a verified theoretic model, to identify whether damping due to spin-flip scattering and/or ordinary scattering is dominant.  相似文献   

18.
Simple phenomenological model of ferromagnetic film characterized by equal energies of surface anisotropies at two sides of a film (symmetric film) is considered. The model is used to describe a two-step spin reorientation transition (SRT) in Au/Co/Au sandwich with Co film thickness: the SRT from perpendicular to canted noncollinear (CNC) state at N=6.3 atomic layers and the subsequent SRT from CNC to in-plane state at N=10.05N=10.05 atomic layers. Analytic expressions for the stability criterion of collinear perpendicular and in-plane states of a film are derived with account of discrete location of atomic layers. The dependence of borders that separate regions corresponding to various magnetic states of a film in the (kB,kS)-diagram on film thickness N is established. kS(kB) is surface (bulk) reduced anisotropy constant. The comparison of theory with experiment related to Au/Co/Au sandwich shows that there is a whole region in the (kB,kS)-diagram corresponding to experimentally determined values of threshold film thicknesses N=6.3 and N=10.05N=10.05. The comparison of this region with similar region determined earlier for a bare Co/Au film within the same model of asymmetric film and characterized by N=3.5, N=5.5N=5.5 shows that the intersection of these regions is not empty. Hence, both the SRT in Au/Co/Au sandwich and in bare Co/Au film with Co film thickness can be described within the same model using the same magnitudes of model parameters kS, kB. Based on this result we conclude that the energy of Neel surface anisotropy at free Co surface is negligible compared to the energy of Co–Au interface anisotropy. It is demonstrated that the destabilization of collinear states in symmetric film leads to occurrence of the ground CNC state and two novel metastable CNC states. These three CNC states exhibit different kinds of symmetry. In case of asymmetric film only ground CNC state occurs on destabilization of collinear states of a film.  相似文献   

19.
李哲  敬超  张浩雷  曹世勋  张金仓 《中国物理 B》2011,20(4):47502-047502
This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloy. Through heat capacity measurements,it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases,as well as thermal hysteresis during martensitic transition. However,careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.  相似文献   

20.
We report the magnetic and electrical transport properties of manganite Pr0.6Na0.4MnO3. At the temperature of 2 K, a field-induced steplike magnetization and resistivity transition are observed. The step transitions of magnetization and resistivity are shifted to higher fields as a result of field cooling, and transformed to a smooth broad one when the cooling field is higher than 20 kOe. Moreover, in a magnetic field slightly below the critical field, the magnetic and resistive relaxation exhibits a spontaneous step after a long incubation time when both the temperature and magnetic field are constant. Such steplike transitions are discussed in terms of a martensiticlike transformation associated with phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号